

eota@tzus.cz

Europäische Technische Bewertung

ETA 17/0720 21/04/2021

(Deutsche Übersetzung, der Original-Zulassungsbescheid ist in tschechischer Sprache verfasst)

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt:

Technical and Test Institute for Construction Prague

Handelsbezeichnung des Bauprodukts CELO Injektionssystem

ResiFIX PYSF

ResiFIX PYSF Change ResiFIX PYSF Tropical ResiFIX PYSF Express

Produktgruppe, zu welcher das Norm der Produktgruppe: 33

Bauprodukt gehört Injektionssystem zur Verankerung im

Mauerwerk

Hersteller CELO Befestigungssysteme GmbH

Industriestraße 6 86551 Aichach Germany

Herstellerwerk Werk 2

Diese europäische technische 56 Seiten einschließlich 53 Anhänge, die

Bewertung umfasst Bestandteil dieser Bewertung bilden

Diese europäische technische

Bewertung wird erteilt im Einklang mit

EAD 330076-00-0604

Metall-Injektionsdübel für Verankerungen in

der Verordnung (EU) Mauerwerk

Nr. 305/2011 auf Grundlage der

Diese Version ersetzt die ETA 17/0720 ausgegeben am 28/08/2017

Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen komplett dem ursprünglichen ausgegebenen Dokument entsprechen und sollten als solche gekennzeichnet sein.

Die Reproduktion dieser Europäischen Technischen Bewertung, einschließlich von Übertragungen auf dem elektronischen Weg, muss in vollem Umfang erfolgen (außer den vertraulichen Anlagen). Teilreproduktionen können jedoch mit der schriftlichen Zustimmung der juristischen Person für die Technische Bewertung - des Technický a Zkušební Ústav Stavební Praha, s.p. (staatlicher Betrieb Technisches und Prüfinstitut für Bauwesen Prag) vorgenommen werden. Jede Teilreproduktion ist als solche zu kennzeichnen.

1. Technische Produktbeschreibung

CELO Injektionssystem ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Tropical und ResiFIX PYSF Express für Mauerwerk ist ein Verbunddübel, der aus einer Kartusche mit Injektionsmörtel, einem Stahlelement und einer Kunststoffsiebhülse besteht. Bei den Stahlelementen handelt es sich um Gewindestangen mit einer Sechskantmutter sowie einer Unterlegscheibe. Die Ankerstangen sind aus verzinktem, aus nichtrostendem oder hochkorrosionsbeständigem Stahl hergestellt.

Der Anker wird in das Bohrloch gesteckt, welches mit Injektionsmörtel befüllt wurde. Das Stahlelement wird über den Verbund zwischen dem Stahlteil, dem Injektionsmörtel und dem Mauerwerk verankert.

Ein Produktmuster, einschließlich der Produktbeschreibung, befindet sich in der Anlage A.

2. Spezifikation des beabsichtigten Verwendungszwecks im Einklang mit dem betreffenden EAD

Die Eigenschaften, welche in Teil 3 genannt sind, gelten nur, sofern die Verwendung des Dübels im Einklang mit den Spezifikationen sowie mit den Bedingungen verwendet wird, welche in der Anlage B aufgeführt sind.

Die Anforderungen dieser Europäischen Technischen Bewertung beruhen auf einer angenommenen Nutzungsdauer der Dübel von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

3. Produkteigenschaften sowie Verweise auf die Methoden, welche zur Produktbewertung verwendet wurden

3.1 Mechanische Tragfähigkeit und Stabilität (BWR 1)

Wesentliche Merkmale	Eigenschaften
Charakteristische Werte für Widerstand	Anhang C6 bis C40
Verschiebungen	Anhang C5 bis C39
Dauerhaftigkeit	Anhang B1

3.2 Brandschutz (BWR 2)

Wesentliche Merkmale	Eigenschaften
Brandverhalten	Die Dübel erfüllen die Anforderungen für die Klasse A1

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Keine Leistung festgelegt.

3.4 Allgemeine Aspekte in Bezug auf die Nutzungseignung

Die Nutzungsdauer sowie Funktionsfähigkeit ist nur gewährleistet, sofern die Spezifikationen für den beabsichtigten Verwendungszweck entsprechend der Anlage B 1 eingehalten werden.

4. Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit Angabe der Rechtsgrundlage

Im Einklang mit dem Beschluss der Europäischen Kommission ¹97/177/EC gilt das Bewertungs- und Überprüfungssystem für die Nachhaltigkeit der Eigenschaften (s. Verordnung (EU) Nr. 305/2011, Anlage V), welches in der nachfolgenden Tabelle aufgeführt ist.

Produkt	beabsichtigter Verwendungszweck	Stufe oder Klasse	System
(Injektionssystem) zur Verankerung im	Zum Befestigen und/oder zur Unterstützung im Mauerwerk von strukturellen Elementen (welche zur Stabilität des Werks beitragen) oder von schweren Teilen.	-	1

¹ Amtsanzeiger EG L 073, 14.03.1997

_

5. Technische Angaben, welche zur Implementierung des AVCP-Systems erforderlich sind, sowie im betreffenden EAD festgelegt

5.1 Aufgaben des Herstellers

Vom Hersteller dürfen nur die Ausgangsmaterialien verwendet werden, welche in der technischen Dokumentation dieser Europäischen Technischen Bewertung festgelegt sind.

Das Produktionssteuerungssystem muss im Einklang mit dem Prüfplan stehen, welcher zum Bestandteil der technischen Dokumentation dieser Europäischen Technischen Bewertung gehört. Der Prüfplan wird im Kontext mit dem Produktionssteuerungssystem festgelegt, welches vom Hersteller betrieben wird und wird beim TZÚS Praha, s.p. (Technisches und Prüfinstitut für Bauwesen Prag) hinterlegt.² Die im Rahmen des Produktionssteuerungssystems erzielten Ergebnisse müssen aufgezeichnet sowie entsprechend den Bestimmungen ausgewertet werden, welche im Prüfplan genannt sind.

5.2 Aufgaben der notifizierten Stelle

Von der notifizierten Stelle sind die Tätigkeiten zu erbringen, welche oben genannt sind und sie muss die erhaltenen Ergebnisse und Fazits im schriftlichen Bericht aufführen.

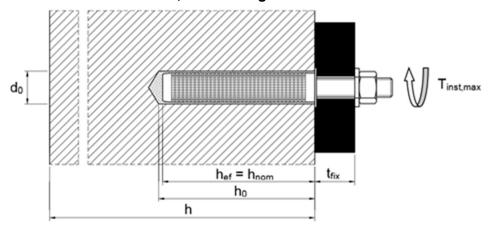
Von der vom Hersteller gewählten notifizierten Stelle wird das Leistungsbeständigkeit erteilt, durch welches die Konformität mit den Bestimmungen dieser Europäischen Technischen Bewertung bestätigt wird.

In den Fällen, wo die Bestimmungen für die Europäische technische Bewertung und den Prüfplan dauerhaft nicht erfüllt werden, wird das Leistungsbeständigkeit von der notifizierten Stelle entzogen sowie unverzüglich das Technický a zkušební ústav stavební Praha, s.p. (Technisches und Prüfinstitut für Bauwesen Prag) informiert.

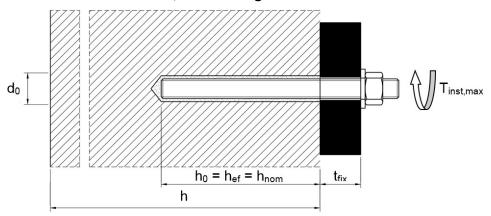
ausgestellt in Prag am 21.04.2021


Ing. Mária Schaan

Leiterin der technischen Bewertungsstelle


_

Der Prüfplan gehört zum vertraulichen Teil der ETA-Dokumentation und wird nicht veröffentlicht. Er wird lediglich zur Bewertung und Überprüfung der Leistungsbeständigkeit an die notifizierte Stelle übergeben.


Installation im Lochstein; Ankerstange mit Siebhülse

Installation im Vollstein; Ankerstange mit Siebhülse

Installation im Vollstein; Ankerstange ohne Siebhülse

 d_0 = Bohrernenndurchmesser

t_{fix} = Dicke des Anbauteils

T_{inst,max} = Maximales Installationsdrehmoment

h = Bauteildicke

h₀ = Bohrlochtiefe an der Schulterh_{ef} = Effektive Verankerungstiefe

h_{nom} = Gesamtsetztiefe

CELO Injektionssystem für Mauerwerk

ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical

Produktbeschreibung

Einbauzustand

Anlage A 1

Kartusche: ResiFIX PYSF, Change, Express, Tropical

150 ml, 280 ml, 300 ml bis 333 ml, 380 ml bis 420 ml Kartusche (Typ: koaxial)

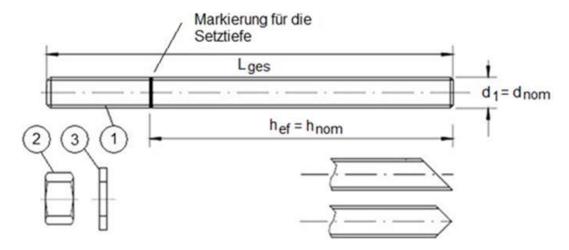
Aufdruck: ResiFIX PYSF, Change, Express, Tropical Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Sicherheitshinweise, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur) Optional: mit Kolbwegskala

235 ml, 345 ml bis 360 ml, 825 ml Kartusche (Typ: "side-by-side")

165 ml und 300 ml Kartusche (Typ: Schlauchfolie)

Statikmischer

SM 14W


CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical

Anlage A 2

Produktbeschreibung

Injektionssystem

Gewindestange M8, M10, M12, M16

Handelsübliche Gewindestangen mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1.
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004. Die Dokumente sind aufzubewahren.
- Markierung der Setztiefe.

CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical

Produktbeschreibung
Gewindestange

Anlage A 3

eil	Benennung	Werkstoff			
	hlteile aus verzinktem Stahl (Stahl				
				nkt ≥ 40 µm gemäß EN ISO 1461:2009	und
N	ISO 10684:2004+AC:2009 oder diffu	sionsverzinkt ≥ 40 µm g			
			-	f_{uk} =400 N/mm ² ; f_{yk} =240 N/mm ² ; A ₅ > 8% E	
		Festigkeitsklasse		f_{uk} =400 N/mm ² ; f_{yk} =320 N/mm ² ; A ₅ > 8% E	
	Ankerstange	gemäß		f _{uk} =500 N/mm²; f _{yk} =300 N/mm²; A ₅ > 8% E	
		EN ISO 898-1:2013		f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; A ₅ > 8% E	
				f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; A_5 > 8% E	
		Festigkeitsklasse		für Ankerstangen der Klasse 4.6 oder 4	
<u> </u>	Sechskantmutter	gemäß		für Ankerstangen der Klasse 5.6 oder t	5.8
		EN ISO 898-2:2012	8	für Ankerstangen der Klasse 8.8	
3	Unterlegscheibe, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Stahl, galvanisch verz	inkt, fe	uerverzinkt oder diffusionsverzinkt	
tal		Werkstoff 1.4301 / 1.430	3 / 1.43	307 / 1.4567 oder 1.4541, gemäß EN 100	188-1:2014)
nd	. ·	**CIRStoll 1.40017 1.400	0 / 1	707 7 1.4007 Odel 1.4041, gelilais Elv 100	,00-1.2014)
tal	hlteile aus nichtrostendem Stahl A4 (Werkstoff 1.4401 / 1.440	4 / 1.4	571 / 1.4362 oder 1.4578, gemäß EN 100	88-1:2014)
		Festigkeitsklasse	50	$f_{uk}=500 \text{ N/mm}^2$; $f_{yk}=210 \text{ N/mm}^2$; $A_5 > 8\% \text{ E}$	Bruchdehnun _e
	Ankerstange 1)	gemäß		f _{uk} =700 N/mm²; f _{yk} =450 N/mm²; A ₅ > 8% E	
		EN ISO 3506-1:2009	80	f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; A_5 > 8% E	3ruchdehnun
		Festigkeitsklasse	50	für Ankerstangen der Klasse 50	
2	Sechskantmutter 1)	gemäß	70	für Ankerstangen der Klasse 70	
		EN ISO 3506-1:2009	80	für Ankerstangen der Klasse 80	
}	Unterlegscheibe, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)			3 / 1.4307 / 1.4567 oder 1.4541, EN 10 4 / 1.4571 / 1.4362 oder 1.4578, EN 10	
ta	hlteile aus hochkorrosionsbeständ	digem Stahl (Werkstof	f 1.452	9 oder 1.4565, gemäß EN 10088-1: 2	014)
		Festigkeitsklasse	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A ₅ > 8% E	Bruchdehnun
	Ankerstange	gemäß	70	f _{uk} =700 N/mm²; f _{yk} =450 N/mm²; A ₅ > 8% E	Bruchdehnun
		EN ISO 3506-1:2009		f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; A ₅ > 8% E	
		Factiglesitaldassa		für Ankerstangen der Klasse 50	
2	Sechskantmutter	Festigkeitsklasse gemäß		für Ankerstangen der Klasse 70	
-	Secrisianunduei	EN ISO 3506-1:2009		für Ankerstangen der Klasse 80	
}	Unterlegscheibe, (z.B.: EN ISO 887:2006, EN ISO 7089:2000.		-	5, gemäß EN 10088-1: 2014	
	EN ISO 7093:2000 oder EN ISO 7094:2000)				
es	tigkeitsklasse 80 nur für nichtrostend	en Stahl A4			

Produktbeschreibung

Werkstoffe

Anlage A 4

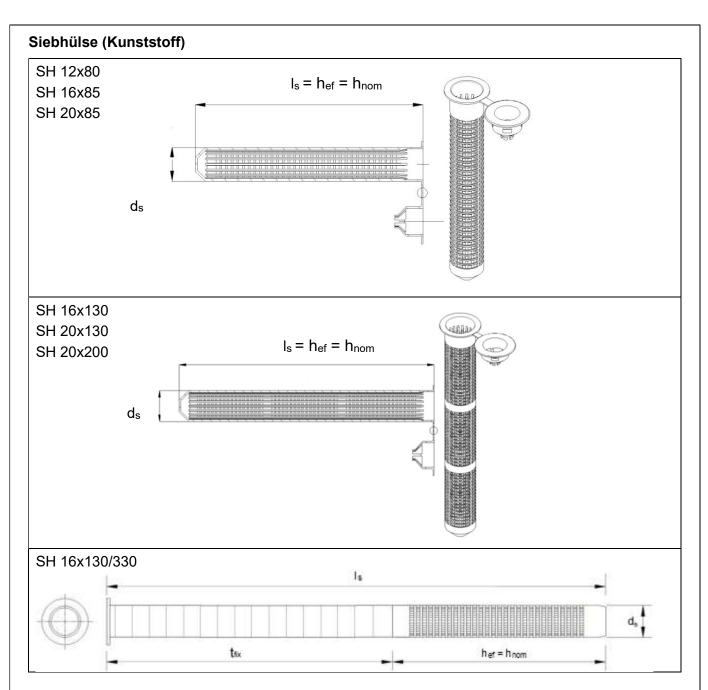


Tabelle A2: Abmessungen Siebhülse (mm)

Siebhülse					
Größe	ds	Is	h _{ef} = h _{nom}		
	[mm]	[mm]	[mm]		
SH12x80	12	80	80		
SH16x85	16	85	85		
SH16x130	16	130	130		
SH16x130/330	16	330	130		
SH20x85	20	85	85		
SH20x130	20	130	130		
SH20x200	20	200	200		

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Produktbeschreibung Siebhülsen	Anlage A 5

Angaben zum Verwendungszweck

Beanspruchung der Verankerung:

Statische oder quasi-statische Lasten.

Verankerungsgrund:

- Mauerwerk aus Vollsteinen (Nutzungskategorie b) entsprechend Anhang B2 bis B4.
- Mauerwerk aus Loch-/Hohlstein (Nutzungskategorie c) entsprechend Anhang B2 bis B4.
- Mauerwerk aus Porenbeton (Nutzungskategorie d) entsprechend Anhang B2.
- Der Mauermörtel muss mindestens den Anforderungen der Festigkeitsklasse M2,5 gemäß EN 998-2:2010 entsprechen.
- Mauerwerksfugen müssen sichtbar sein und mit Mörtel gefüllt sein.
- Bei anderen Steinen im Vollsteinmauerwerk, Lochsteinmauerwerk oder Porenbeton darf die charakteristische Tragfähigkeit des Dübels durch Test auf der Baustelle entsprechend TR 053, Tabelle C unter Berücksichtigung des β-Faktors von Anhang C1, Tabelle C1 ermittelt werden.

Hinweis: Die charakteristischen Tragfähigkeiten gelten auch für größere Steinformate und größere Druckfestigkeiten der Mauersteine

Temperaturbereich:

- T_a: 40°C bis +40°C (max. Kurzzeittemperatur +40°C und max. Langzeittemperatur +24°C)
- T_b: 40°C bis +80°C (max. Kurzzeittemperatur +80°C und max. Langzeittemperatur +50°C)

Anwendungsbedingungen (Umgebungsbedingungen):

- Trockenes und nasses Mauerwerk (in Bezug auf den Injektionsmörtel).
- (X1) Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl A2 bzw. A4 oder hochkorrosionsbeständiger Stahl).
- (X2) Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl A4 oder hochkorrosionsbeständiger Stahl).
- (X3) Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Agressive Bedingunen sind z. B. ständiges, abwechelndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Nutzungsbedingungen für Installation und Nutzung:

- Kategorie d/d Installation und Verwendung in trockenem Mauerwerk.
- Kategorie w/w Installation und Verwendung in nassem Mauerwerk (inkl. w/d Installation im nassem Mauerwerk)

Bemessung:

- Unter Berücksichtigung des betreffenden Mauerwerks im Bereich der Verankerung, sowie der gegebenen Last, welche vom Dübel übertragen werden soll und der Weiterleitung dieser Last zur Konstruktionsstütze sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels anzugeben.
- Die Bemessung der Verankerung erfolgt von einem auf dem Gebiet der Verankerung und des Mauerwerks erfahrenen Ingenieurs, entsprechend der EOTA Technical Report TR 054, Bemessungsmethode A.

Installation:

- Trockenes oder nasses Mauerwerk.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Verwendungszweck Spezifikationen	Anlage B 1

Tabelle	B1: Übersicht der Mauersteine und Eigenschaften mit den entsprechenden
	Befestigungselementen (Anker und Siebhülse)

	Defectiguing coloniem (Aimer una cicamaico)						
Stein-Nr.	Steinart	Foto	Abmessungen Länge x Breite x Höhe	Druck- festigkeit	Rohdichte	Siebhülse - Ankertyp	Anhang
			[mm]	[N/mm ²]	[kg/dm ³]		
Por	enbetonsteine	gemäß EN 771-4					,
1	Porenbeton- stein AAC2		599 x 375 x 249	2	0,35	M8, M10, M12, M16	C4 / C5
2	Porenbeton- stein AAC4		499 x 375 x 249	4	0,5	M8, M10, M12, M16	C6 / C7
3	Porenbeton- stein AAC6	I	499 x 240 x 249	6	0,6	M8, M10, M12, M16	C8 / C9
Kal	ksandsteine ge	mäß EN 771-2					
4	Kalksand- vollstein KS-NF		240 x 115 x 71	10 20 27	2,0	M8 / M10 / M12 / M16 SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16 SH 20x200 - M12 / M16	C10 / C11
5	Kalksand- lochstein KS L-3DF		240 x 175 x 113	8 12 14	1,4	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16 SH 20x200 - M12 / M16	C12 / C13
6	Kalksand- lochstein KS L-12DF		498 x 175 x 238	10 12 16	1,4	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x130 - M12 / M16	C14 / C15

CELO Injektionssystem für Mauerwerk	
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Verwendungszweck	Anlage B 2
Steintyp und Eigenschaften mit den entsprechenden Befestigungselementen	

Tabelle B1: Übersicht der Mauersteine und Eigenschaften mit den entsprechenden Befestigungselementen (Anker und Siebhülse)

Stein-Nr.	Steine gemäß	원 EN 771-1	Abmessungen Länge x Breite x Höhe [mm]	Druck- festigkeit	[kg/qm ₃]	Siebhülse - Ankertyp	Anhang
7	Vollziegel Mz-DF		240 x 115 x 55	10 20 28	1,64	M8 / M10 / M12 / M16 SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16 SH 20x200 - M12 / M16	C16 / C17
8	Hochloch- ziegel HLz-16DF		497 x 240 x 238	6 9 12 14	0,83	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16 SH 20x200 - M12 / M16	C18 / C19
9	Lochziegel Porotherm Homebric		500 x 200 x 299	6 8 10	0,68	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16	C20 / C21
10	Lochziegel BGV Thermo		500 x 200 x 314	4 6 10	0,62	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16	C22 / C23
11	Lochziegel Calibric Th		500 x 200 x 314	6 9 12	0,62	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16	C24 / C25
12	Lochziegel Urbanbrick		560 x 200 x 274	6 9	0,74	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16	C26 / C27

CELO Injektionssystem für Mauerwerk	
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Verwendungszweck	
Steintyp und Eigenschaften mit den entsprechenden Befestigungselementen	

Anlage B 3

Tabelle B1: Übersicht der Mauersteine und Eigenschaften mit den entsprechenden Befestigungselementen (Anker und Siebhülse)

Stein-Nr.	elsteine gemäß	၌ EN 771-1	Abmessungen Länge x Breite x Höhe [mm]	Druck- festigkeit	Rohdichte	Siebhülse - Ankertyp	Anhang
13	Lochziegel Blocchi Leggeri		250 x 120 x 250	4 6 8	0,55	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16 SH 20x200 - M12 / M16	C28 / C29
14	Lochziegel Doppio Uni		250 x 120 x 120	10 16 20 28	0,92	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16 SH 20x200 - M12 / M16	C30 / C31
Leic	htbetonsteine (gemäß EN 771-3		1	I		
15	Lochstein aus Leichtbeton Bloc creux B40		494 x 200 x 190	4	0,80	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16	C32 / C33
16	Vollstein aus Leichtbeton		300 x 123 x 248	2	0,63	M8 / M10 / M12 / M16	C34 / C35
17	Lochstein aus Leichtbeton Leca Lex harkko RUH- 200		498 x 200 x 195	2,7	0,62	SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16	C36 / C37
18	Vollstein aus Leichtbeton Leca Lex harkko RUH- 200 Kulma		498 x 200 x 195	3	0,62	M8 / M10 / M12 / M16 SH 12x80 - M8 SH 16x85 - M8 / M10 SH 16x130 - M8 / M10 SH 16x130/330 - M8 / M10 SH 20x85 - M12 / M16 SH 20x130 - M12 / M16	C38 / C39

CELO Injektionssystem für Mauerwerk	
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Verwendungszweck	
Steintyp und Eigenschaften mit den entsprechenden Befestigungselementen	

Anlage B 4

Installation: Stahlbürste RBT

Tabelle B2: Montagekennwerte für Porenbeton und Vollstein (ohne Siebhülse)

Ankergröße			М8	M10	M12	M16
Bohrernenndurchmesser	d ₀	[mm]	10	12	14	18
Bohrlochtiefe	h ₀	[mm]	80	90	100	100
Effektive Verankerungstiefe	h _{ef} = h _{nom}	[mm]	80	90	100	100
Minimale Wanddicke	h _{min}	[mm]		h _{ef} ·	+ 30	
Durchgangsloch im anzuschließenden Anbauteil	d _f ≤	[mm]	9	12	14	18
Bürstendurchmesser	dь	[mm]	RBT10	RBT12	RBT14	RBT18
burstendurchmesser			12	14	16	20
Minimaler Bürstendurchmesser	d _{b,min}	[mm]	10,5	12,5	14,5	18,5
Maximales Installationsdrehmoment	T _{inst}	[Nm]		Siehe Anhan	g C4 bis C39	

Tabelle B3: Montagekennwerte im Vollstein und Lochstein (mit Siebhülse)

Ankergröße				M8 / M10			M12 / M16		
Siebhülse		[mm]	SH12x80	SH16x85	SH16x130	SH16x130/ 330	SH20x85	SH20x130	SH20x200
Bohrernenndurchmesser	d ₀	[mm]	12	16	16	16	20	20	20
Bohrlochtiefe	h ₀	[mm]	85	90	135	135 +t _{fix} 1)	90	135	205
Effektive Verankerungstiefe	h _{ef} = h _{nom}	[mm]	80	85	130	130	85	130	200
Minimale Wanddicke	h _{min}	[mm]	115	115	175	175	115	175	240
Durchgangsloch im anzuschließenden Anbauteil	d _f ≤	[mm]	9	9 (M	18) / 12 (N	/110)	14 (N	И12) / 18 (M16)
Bürstendurchmesser	d _b	[mm]	RBT12		RBT16 18			RBT20 22	
Minimaler Bürstendurchmesser	$d_{b,min}$	[mm]	12,5		16,5			20,5	
Maximales Installationsdrehmoment	T _{inst}	[Nm]	Siehe Anhang C4 bis C39						

 $[\]frac{1}{t_{\text{fix}}}$ < 200 mm

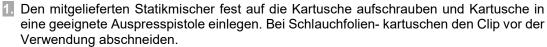
CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Verwendungszweck Montagekennwerte und Reinigungsbürste	Anlage B 5

Tabelle B4: Maximale Verarbeitungszeiten und minimale Aushärtezeiten

	ResiFIX PY	SF Tropical		(PYSF, SF Change ¹⁾	ResiFIX PYSF Express		
Temperatur im Verankerungs- grund T	Max. Verar- beitungszeit	Min. Aushärtezeit	Max. Verar- beitungszeit	Min. Aushärtezeit	Max. Verar- beitungszeit	Min. Aushärtezeit	
0°C bis +4°C			45 min	3 h	25 min	80 min	
+ 5 °C bis +9 °C			25 min	2 h	10 min	45 min	
+ 10 °C bis +14 °C	30 min	5 h	20 min	100 min	4 min	25 min	
+ 15 °C bis +19 °C	20 min	210 min	15 min	80 min	3 min	20 min	
+ 20 °C bis +29 °C	15 min	145 min	6 min	45 min	2 min	15 min	
+ 30 °C bis +34 °C	10 min	80 min	4 min	25 min			
+ 35 °C bis +39 °C	6 min	45 min	2 min	20 min			
+40°C bis +44°C	4 min	25 min					
+45°C	2 min	20 min					
Kartuschen- temperatur	+5°C bis +45°C		+5°C bi	s +40°C	-5°C bi	s +30°C	

¹⁾ Der ResiFIX PYSF Change Injektionsmörtel besitzt einen Aushärtezeitkontrolle, indem nach Erreichen der Mindestaushärtezeit die Farbe von blau in grau wechselt. Die Aushärtezeitkontrolle gilt nur für die Standard Version des Mörtels.

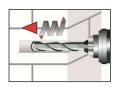
CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical


Verwendungszweck
Aushärtezeit

Anlage B 6


Montageanleitung

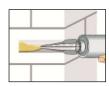
Vorbereitung der Kartusche

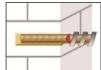


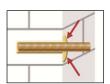
Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B4) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.

2. Der Mörtelvorlauf darf nicht zur Befestigung der Ankerstange verwendet werden. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue oder blau (ResiFIX PYSF Change) Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe. Bei Schlauchfoliengebinde sind min. 6 Hübe zu verwerfen.

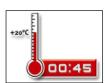
Installation im Vollstein (ohne Siebhülse)


3. Das Bohrloch, senkrecht zur Oberfläche des Verankerungsgrundes, mit Bohrverfahren nach Anhang C4-C39 mit vorgeschriebenem Bohrernenndurchmesser und Bohrlochtiefe entsprechend der Ankergröße und Einbindetiefe des gewählten Dübels im Verankerungsgrund erstellen. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.


Bohrloch vom Bohrlochgrund her zweimal ausblasen. Die Stahlbürste mit passender Größe (> d_{b,min} Tabelle B2 oder B3) in eine Bohrmaschine oder einen Akkuschrauber einstecken, das Bohrloch zweimal ausbürsten und abschließend erneut zweimal ausblasen.


5. Das Bohrloch vom Grund her zu mindestens 2/3 mit Mörtel füllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen.

Die temperaturrelevanten Verarbeitungszeiten (Tabelle B4) sind zu beachten.



6. Vor dem Einsetzen der Ankerstange ist die Verankerungstiefe auf der Ankerstange zu markieren. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe eindrücken. Die Ankerstange muss schmutz-, fett-, und ölfrei sein.

Nach der Installation des Ankers sollte der Ringspalt komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden.

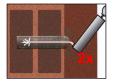
8. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten (Tabelle B4).

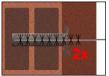
Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Installationsdrehmoment (siehe Anhang C5-C39) montiert werden. Die Mutter muss mit einem kalibrierten Drehmomentschlüssel angezogen werden.

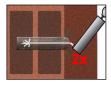
CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical

Verwendungszweck

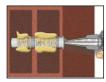
Montageanleitung für Vollstein und Porenbetonstein


Anlage B 7


Montageanleitung (Fortsetzung)

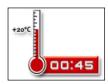

Installation im Voll- und Lochstein Mauerwerk (mit Siebhülse)

3. Das Bohrloch, senkrecht zur Oberfläche des Verankerungsgrundes, mit Bohrverfahren nach Anhang C4-C39 mit vorgeschriebenem Bohrernenndurchmesser und Bohrlochtiefe entsprechend der Ankergröße und Einbindetiefe des gewählten Dübels im Verankerungsgrund erstellen. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

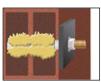


Bohrloch vom Bohrlochgrund her zweimal ausblasen. Die Stahlbürste mit passender Größe (> db,min Tabelle B2 oder B3) in eine Bohrmaschine oder einen Akkuschrauber einstecken, das Bohrloch zweimal ausbürsten und abschließend erneut zweimal ausblasen.

Die Siebhülse bündig mit der Oberfläche des Verankerungsgrundes in das Bohrloch einstecken. Sicherstellen, dass die Siebhülse optimal ins Bohrloch passt. Siebhülse niemals kürzen, außer SH 16x130/330. Für Installation der SH 16x130/330 Siebhülsenlänge bestimmen und von der Spitze her auf die gewünschte Länge abschneiden und Kappe aufsetzen. Nur Siebhülsen mit richtiger Länge verwenden.


Die Siebhülse vom Grund her mit Mörtel füllen. Die exakte Mörtelmenge ist dem Kartuschenetikett oder der Montageanleitung zu entnehmen.

Die temperaturrelevanten Verarbeitungszeiten (Tabelle B4) sind zu beachten.



7. Vor dem Einsetzen der Ankerstange ist die Verankerungstiefe auf der Ankerstange zu markieren. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe eindrücken. Die Ankerstange muss schmutz-, fett-, und ölfrei sein.

Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten (Tabelle B4).

Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Installationsdrehmoment (siehe Anhang C5-C39) montiert werden. Die Mutter muss mit einem kalibrierten Drehmomentschlüssel angezogen werden.

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical

Verwendungszweck

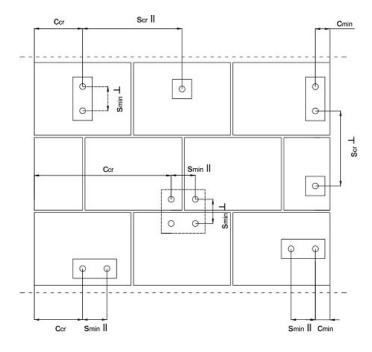
Montageanleitung für Lochstein und Leichbetonstein

Anlage B 8

Stein-Nr.	Nutrum and trata maria	A mkanan # C a	β-Faktor			
Stein-Nr.	Nutzungskategorie	Ankergröße -	T _a : 24°C / 40°C	T _b : 50°C / 80°C		
		M8	0.00	0.70		
	d/d	M10	0,82	0,70		
	w/w	M12	0,70	0,60		
1-3		M16	0,70			
1-3		M8	0,82	0,70		
		M10	0,63	0,54		
		M12	0,48	0,41		
		M16	0,40			
4-18	d/d w/d w/w	Alle Größen	0,72	0,50		

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical
Leistungen β-Faktor für Baustellenversuche unter Zugbelastung

Tabelle C2: Charakteristische Werte der Tragfähigkeit bei Zugbeanspruchung, Querbeanspruchung und Biegemomente für Gewindestangen


Größe			M8	M10	M12	M16
Charakteristische Zugtragfähigkeit						
Stahl – Festigkeitsklasse 4.6 ²⁾	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63
Starii – Pestigkeitskiasse 4.0 ^{-/}	γ _{Ms} 1)	[-]		2	,0	
Stahl – Festigkeitsklasse 4.8 ²⁾	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63
Starii - 1 estigheitshiasse 4.0	γ _{Ms} 1)	[-]			,5	
Stahl – Festigkeitsklasse 5.6 ²⁾	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	79
Otam 1 Cottgholioniasse 0.0	γ _{Ms} 1)	[-]		2		,
Stahl – Festigkeitsklasse 5.8 ²⁾	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	79
- Congresional Congression	γ _{Ms} 1)	[-]			,5	T
Stahl – Festigkeitsklasse 8.8 ²⁾	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	126
	γ _{Ms} ¹⁾	[-]			,5	
Nichtrostender Stahl A2 / A4 / HCR, Festigkeitsklasse 70	N _{Rk,s}	[kN]	26	41	59	110
	γ _{Ms} ¹⁾	[-]			87	
Nichtrostender Stahl A4 / HCR, Festigkeitsklasse 80	$N_{Rk,s}$	[kN]	29	46	67	126
	γ _{Ms} 1)	[-]		1,	,6	
Charakteristische Quertragfähigkeit						
Stabl. Factigly cital (lease 4.6.2)	$V_{Rk,s}$	[kN]	7 (7)	12 (11)	17	31
Stahl – Festigkeitsklasse 4.6 ²⁾	γ _{Ms} 1)	[-]		1,	67	
Stahl – Festigkeitsklasse 4.8 ²⁾	$V_{Rk,s}$	[kN]	7 (7)	12 (11)	17	31
Starii – Pestigkeitskiasse 4.6 ⁻⁷	γ _{Ms} 1)	[-]		1,:	25	
Stabl. Factiglicitaliana F 6 2)	$V_{Rk,s}$	[kN]	9 (8)	15 (13)	21	39
Stahl – Festigkeitsklasse 5.6 ²⁾	γ _{Ms} 1)	[-]		1,	67	
Stabl. Factiglicital lagge F 9 2)	V _{Rk,s}	[kN]	9 (8)	15 (13)	21	39
Stahl – Festigkeitsklasse 5.8 ²⁾	γ _{Ms} 1)	[-]		1,:	25	
Stahl – Festigkeitsklasse 8.8 ²⁾	$V_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63
Starii – Pestigkeitskiasse 6.6 -7	γ _{Ms} 1)	[-]		1,:	25	
Nichtrostender Stahl A2 / A4 / HCR, Festigkeitsklasse 70	$V_{Rk,s}$	[kN]	13	20	30	55
Nichtiosterider Starii AZ / A4 / HCR, Festigkeitsklasse / 0	γ _{Ms} 1)	[-]		1,	56	
Nightrastander Stahl A4 / UCD Factiglesitaklassa 90	$V_{Rk,s}$	[kN]	15	23	34	63
Nichtrostender Stahl A4 / HCR, Festigkeitsklasse 80	γ _{Ms} 1)	[-]		1,	33	
Charakteristisches Biegemoment						
Stahl – Festigkeitsklasse 4.6 ²⁾	$M_{Rk,s}$	[Nm]	15 (13)	30 (27)	52	133
Otanii - i Gaugitolianiaaac 4.0 /	γ _{Ms} 1)	[-]		1,	67	
Stabl. Factigly cital lance 4.9.2)	$M_{Rk,s}$	[Nm]	15 (13)	30 (27)	52	133
Stahl – Festigkeitsklasse 4.8 ²⁾	γ _{Ms} 1)	[-]			25	•
Otal	$\dot{M}_{Rk,s}$	[Nm]	19 (16)	37 (33)	65	166
Stahl – Festigkeitsklasse 5.6 ²⁾	γ _{Ms} 1)	[-]	<u> </u>	1,		ı
0.11 5 0.1 0.11 5 2.20	M _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166
Stahl – Festigkeitsklasse 5.8 ²⁾	γ _{Ms} 1)	[-]	(- /		25	
	M _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266
Stahl – Festigkeitsklasse 8.8 ²⁾	γMs ¹⁾	[-]	()	, ,	25	
	M _{Rk,s}	[Nm]	26	52	92	232
Nichtrostender Stahl A2 / A4 / HCR, Festigkeitsklasse 70	γMs ¹⁾	[-]			56	202
	· ·		30	60	105	266
Nichtrostender Stahl A4 / HCR, Festigkeitsklasse 80	M _{Rk,s}	[Nm]	30			200
	γ _{Ms} 1)	[-]		Ι,	33	

¹⁾ Sofern andere nationale Regelungen fehlen

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical Leistungen Charakteristische Werte der Tragfähigkeit bei Zugbeanspruchung, Querbeanspruchung und Biegemomente für Gewindestangen

²⁾ Werte in Klammern gültig für feuerverzinkte unterdimensionierte Gewindestangen mit einem kleineren Spannungsquerschnitt As gemäß EN ISO 10684:2004+AC:2009

Rand- und Achsabstände

= Charakteristischer Randabstand Ccr

= Minimaler Randabstand Cmin

Charakteristischer Achsabstand Scr

Minimaler Achsabstand Smin

= Charakteristischer (minimaler) Achsabstand für Anker parallel zur Lagerfuge angeordnet Scr II; (Smin II) = Charakteristischer (minimaler) Achsabstand für Anker senkrecht zur Lagerfuge angeordnet $S_{cr} \perp ; (S_{min} \perp)$

Lastrichtung Ankeran- ordnung	Zuglast	Querzuglast parallel zum freien Rand	Querzuglast senkrecht zum freien Rand
Ankeranordnung parallel zur Lagerfuge s _{cr,ll} ; (s _{min,ll})		V	V
Ankeranordnung senkrecht zur Lagerfuge s _{cr,} ⊥; (s _{min,} ⊥)		V	V

= Gruppenfaktor bei Zugbelastung für Anker parallel zur Lagerfuge angeordnet $\alpha_{g,N,II}$ = Gruppenfaktor bei Querzugbelastung für Anker parallel zur Lagerfuge angeordnet $\alpha_{g,V,II}$ = Gruppenfaktor bei Zugbelastung für Anker senkrecht zur Lagerfuge angeordnet $\alpha_{g,N,\perp}$ = Gruppenfaktor bei Querzugbelastung für Anker senkrecht zur Lagerfuge angeordnet $\alpha_{g,V,\perp}$

Gruppe aus 2 Anker: und $V^{g}_{Rk} = \alpha_{g,V} * V_{Rk}$ $N^{g}_{Rk} = \alpha_{g,N} * N_{RK}$

Gruppe aus 4 Anker: $N^{g}_{Rk} = \alpha_{g,N,II}^* \alpha_{g,N,\perp}^* N_{RK}$ und $V_{Rk} = \alpha_{g,V,II} \alpha_{g,V,\perp} V_{Rk}$

 $(N_{Rk:} N_{Rk,b} oder N_{Rk,b,j} f \ddot{u} c_{cr})$

 $(V_{Rk:} V_{Rk,c}; V_{Rk,c,j}; V_{Rk,b} oder V_{Rk,b,j} für c_{cr})$

(mit zugehörigem α_g)

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical Leistungen

Rand- und Achsabstände

Gruppenfaktor, gültig für alle Steintypen Gruppenfaktor für Ankergruppen unter Zugbelastung Anordnung mit c ≥ mit s ≥ II: Ankeranordnung Ccr 2,0 Scr $\alpha_{\text{g,N,II}}$ parallel zur Lagerfuge [-] ⊥: Ankeranordnung senkrecht zur 2,0 Ccr Scr $\alpha_{\text{g,N,}\perp}$ Lagerfuge Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand mit c ≥ Anordnung mit s ≥ II: Ankeranordnung 2,0 Ccr Scr $\alpha_{\text{g,V,II}}$ parallel zur Lagerfuge [-] ⊥: Ankeranordnung senkrecht zur 2,0 Ccr Scr $\alpha_{\text{q,V,}\perp}$ Lagerfuge Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand mit c ≥ mit s ≥ Anordnung II: Ankeranordnung 2,0 Ccr Scr $\alpha_{\text{g,V,II}}$ parallel zur Lagerfuge [-] ⊥: Ankeranordnung senkrecht zur Ccr 2,0 Scr $\alpha_{\text{g,V,}\perp}$ Lagerfuge **CELO Injektionssystem für Mauerwerk** ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical Anlage C 4 Leistungen Gruppenfaktor

Tabelle C3: Beschreibung

Steintyp	Porenbetonstein AAC2
Rohdichte [kg/dm ³]	0,35
Druckfestigkeit [N/mm²]	2
Norm	EN 771-4
Hersteller (Länderkennung)	z.B. Ytong (CZ)
Steinabmessungen [mm]	599 x 375 x 249
Bohrmethode	Drehbohren

Tabelle C4: Montageparameter (Rand- und Achsabstände)

Ankergröße	Effektive Verankerungstiefe h _{ef}	Randabstand $c_{min} = c_{cr}$ [mm]	Achsabstand S _{cr} = S _{min II} = S _{min} ⊥	Maximales Installationsdrehmoment T _{inst,max} [Nm]
M8	80	120	240	[1411]
M10	90	135	270	_
M12	100	150	300	2
M16	100	150	300	

Tabelle C5: Verschiebungen

h _{ef}	N	δ_{N0}	$\delta_{\text{N}^{\infty}}$	V	δ_{V0}	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N _n	0,29	0,58	$V_{n_{\ell}}$	1,23	1,84
90	1 V Rk	0,23	0,46	$\frac{r_{Rk}}{1.4}$	0,87	1,31
100	$1,4 \bullet \gamma_M$	0,39	0,79	$1,4 \bullet \gamma_M$	1,29	1,94

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Porenbetonstein AAC2	Anlage C 5
Steinbeschreibungen	-
Montageparameter, Verschiebungen	

Tabelle C6: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			Ch	arakteristische	Werte			
	-sb	Nutzungskategorie						
Ankergröße	Effektive Verankerungs tiefe	d/d		w/d w/w		d/d w/d w/w		
Anke	\ \	40°C / 24°C	80°C / 50°C	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche		
	h _{ef}	N _{Rk} 1)	N _{Rk} 1)	N _{Rk} 1)	N _{Rk} 1)	$V_{Rk,b}^{2)}$		
	[mm]			[kN]				
		Druckfe	estigkeit f _b ≥ 2 N	l/mm²				
М8	80	0,9	0,9	0,9	0,9	1,5		
M10	90	0,9	0,9	0,9	0,75	2,0		
M12	100	1,5	1,5	1,2	0,9	2,5		
M16	100	1,5	1,5	1,2	0,9	3,5		

¹⁾ Bemessung gemäß TR 054: N_{Rk} = N_{Rkp} = N_{Rkb}; N_{Rks} gemäß Tabelle C2 Anhang C2; N_{Rk,pb} gemäß TR 054

CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical

Leistungen Porenbetonstein AAC2
Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

 $^{^{2)}}$ $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2

Tabelle C7: Beschreibung

Steintyp	Porenbetonstein AAC4
Rohdichte [kg/dm ³]	0,50
Druckfestigkeit [N/mm²]	4
Norm	EN 771-4
Hersteller (Länderkennung)	z.B. Ytong (CZ)
Steinabmessungen [mm]	499 x 375 x 249
Bohrmethode	Drehbohren

Tabelle C8: Montageparameter (Rand- und Achsabstände)

Ankergröße	Effektive Verankerungstiefe h _{ef}	rankerungstiefe Randabstand		Maximales Installationsdrehmoment T _{inst,max}
	hef C _{min} = C _{cr} S _{cr} = [mm]			[Nm]
М8	80	120	240	
M10	90	135	270	2
M12	100	150	300	
M16	100	150	300	

Tabelle C9: Verschiebungen

h _{ef}	N	δ_{N0}	δ_{N^∞}	V	δ_{v_0}	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,23	0,47	V_{n}	1,23	1,84
90	1 Rk	0,58	1,17	7 Rk	0,87	1,31
100	$1,4 \bullet \gamma_M$	0,10	0,21	$1,4 \bullet \gamma_M$	1,29	1,94

CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical
Leistungen Porenbetonstein AAC4
Steinbeschreibungen
Montageparameter, Verschiebungen

Tabelle C10: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			Ch	arakteristische	Werte				
	S S S S S S S S S S S S S S S S S S S		Nutzungskategorie						
Ankergröße	Effektive Verankerungs- tiefe	d/d		w/d w/w		d/d w/d w/w			
Anke		40°C / 24°C	80°C / 50°C	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche			
	h _{ef}	N _{Rk} 1)	N _{Rk} 1)	N _{Rk} 1)	N _{Rk} 1)	$V_{Rk,b}^{2)}$			
	[mm]			[kN]					
		Druckfe	estigkeit f _b ≥ 4 N	l/mm²					
M8	80	0,9	0,9	0,9	0,9	1,5			
M10	90	2,5	2,0	1,5	1,5	2,0			
M12	100	2,5	2,0	2,0	1,5	2,5			
M16	100	3,5	3,0	2,0	2,0	3,5			

Bemessung gemäß TR 054: N_{Rk} = N_{Rkp} = N_{Rkb}; N_{Rks} gemäß Tabelle C2 Anhang C2; N_{Rk,pb} gemäß TR 054

CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical

Leistungen Porenbetonstein AAC4
Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

 $^{^{2)}}$ $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2

Tabelle C11: Beschreibung

Steintyp	Porenbetonstein AAC6
Rohdichte [kg/dm³]	0,60
Druckfestigkeit [N/mm²]	6
Norm	EN 771-4
Hersteller (Länderkennung)	z.B. Porit (DE)
Steinabmessungen [mm]	499 x 240 x 249
Bohrmethode	Drehbohren

Tabelle C12: Montageparameter (Rand- und Achsabstände)

Ankergröße	Effektive Verankerungstiefe h _{ef}	Randabstand C _{min} = C _{cr} [mm]	Achsabstand S _{Cr} = S _{min II} = S _{min} ⊥	Maximales Installationsdrehmoment T _{inst,max} [Nm]
M8	80	120	240	[NIII]
_		-		
M10	90	135	270	_ 2
M12	100	150	300	_
M16	100	150	300	

Tabelle C13: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	$N_{\rm re}$	0,54	1,09	$V_{\rm ps}$	0,32	0,48
90	1 V Rk	0,85	1,69	1 1 1	1,49	2,23
100	$1,4 \bullet \gamma_M$	0,10	0,19	$1,4 \bullet \gamma_M$	1,67	2,50

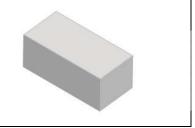
CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical
Leistungen Porenbetonstein AAC6
Steinbeschreibungen
Montageparameter, Verschiebungen

Tabelle C14: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			Ch	arakteristische	Werte		
	-sb	Nutzungskategorie					
Ankergröße	Effektive Verankerungs- tiefe	d/d		w/d w/w		d/d w/d w/w	
Anke		40°C / 24°C	80°C / 50°C	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche	
	h _{ef}	N _{Rk} 1)	N _{Rk} 1)	N _{Rk} 1)	N _{Rk} 1)	$V_{Rk,b}^{2)}$	
	[mm]			[kN]			
		Druck	festigkeit f _b ≥ 6	N/mm ²			
M8	80	2,0	2,0	2,0	2,0	5,5	
M10	90	3,0	2,5	2,5	2,0	9,0	
M12	100	4,5	3,5	3,0	2,5	9,0	
M16	100	5,5	4,5	3,5	3,0	11,0	

¹⁾ Bemessung gemäß TR 054: N_{Rk} = N_{Rkp} = N_{Rkb}; N_{Rks} gemäß Tabelle C2 Anhang C2; N_{Rk,pb} gemäß TR 054

CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical


Leistungen Porenbetonstein AAC6
Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

 $^{^{2)}}$ $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2

Steintyp: Kalksandvollstein KS-NF

Tabelle C15: Beschreibung

Steintyp	Kalksandvollstein KS-NF
Rohdichte [kg/dm³]	2,0
Druckfestigkeit [N/mm²]	10, 20 oder 27
Norm	EN 771-2
Hersteller (Länderkennung)	z.B. Wemding (DE)
Steinabmessungen [mm]	240 x 115 x 71
Bohrmethode	Hammerbohren

Tabelle C16: Montageparameter (Rand- und Achsabstände)

	tagopa.aoto.	1	ana / tonoabotana	•,	
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe	Randabstand	Achsabstand	Maximales Installationsdrehmoment
		h _{ef}	$c_{min} = c_{cr}$	$s_{cr} = s_{min II} = s_{min} \perp$	T _{inst,max}
			[mm]		[Nm]
M8	-	80	120	240	10
M10	-	90	135	270	20
M12 / M16	-	100	150	300	20
M8	SH 12x80	80	120	240	10
IVIO	SH 16x85	85	127	255	10
M10	SH 16x85	85	127	255	
MO / M40	SH 16x130	130	195	390	
M8 / M10	SH 16x130/330	130	195	390	20
	SH 20x85	85	127	255	20
M12 / M16	SH 20x130	130	195	390	
	SH 20x200	200	300	600	

Tabelle C17: Verschiebungen

h _{ef}	N	δηο	δ _{N∞}	V	δνο	δγ∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80		0,08	0,16		3,07	4,61
85	$N_{{\scriptscriptstyle R}{\scriptscriptstyle k}}$	0,26	0,52	$V_{\rm py}$	1,46	2,19
90		0,09	0,18	$\frac{r_{Rk}}{1.4}$	1,50	2,25
100	$1,4 \bullet \gamma_M$	0,10	0,20	$1,4\bullet\gamma_{\scriptscriptstyle M}$	1,03	1,53
130 ; 200		0,22	0,44		1,16	1,74

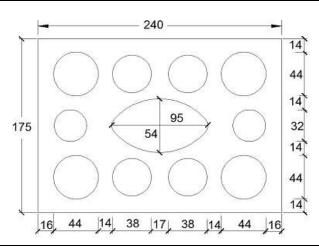
CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical
Leistungen Kalksandvollstein KS-NF
Steinbeschreibungen
Montageparameter, Verschiebungen

Steintyp: Kalksandvollstein KS-NF Tabelle C18: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			С	harakteristische V	Verte
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe	Nutzungskategorie d/d; w/d; w/w		rie
Anker	Siebl	Ver	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche
		h _{ef}	$N_{Rk}^{-1)}$	N _{Rk} 1)	$V_{Rk,b}^{2)}$
		[mm]		[kN]	,
	D		f _b ≥ 10 N/mm ²	<u> </u>	
М8	_	80	3,0	2,0	3,0
M10	_	90	3,0	2,0	3,0
M12	_	100	4,0	2,5	3,5
M16	_	100	3,0	2,0	3,5
	SH 12x80	80	2,5	2,0	2,5
М8	SH 16x85	85	2,5	2,0	3,0
	SH16x130 / SH16x130/330	130	4,0	2,5	4,0
	SH 16x85	85	2,5	2,0	3,0
M10	SH16x130/330	130	4,5	3,0	4,0
	SH 20x85	85	2,5	2,0	3,0
M12 / M16	SH 20x130 / SH 20x200	130 / 200	4,5	2,5	4,0
			t f _b ≥ 20 N/mm ²		1,12
М8	_	80	4,5	3,0	4,5
M10	-	90	4,5	3,0	4,5
M12	_	100	5,5	3,5	5,0
M16	-	100	4,5	3,0	5,0
	SH 12x80	80	4,0	2,5	4,0
М8	SH 16x85	85	4,0	2,5	4,5
	SH16x130 / SH16x130/330	130	6,0	3,5	5,5
	SH 16x85	85	4,0	2,5	4,5
M10	SH 16x130/330	130	6,0	4,0	5,5
	SH 20x85	85	4,0	2,5	5,0
M12 / M16	SH 20x130 / SH 20x200	130 / 200	6,0	4,0	5,5
			t f _b ≥ 27 N/mm²	1,0	, 0,0
M8	_	80	5,5	3,5	5,0
M10	-	90	5,5	3,5	5,5
M12	-	100	6,5	4,5	6,0
M16	_	100	5,5	3,5	6,0
IVITO	SH 12x80	80	4,5	3,0	4,5
M8	SH 16x85	85	4,5	3,0	5,5
IVIO	SH16x130 / SH16x130/330	130	6,5	4,5	6,5
	SH 16x85	85	4,5	3,0	5,5
M10	SH 16x130/330	130	6,5	4,5	6,5
		85	4,5	3,0	5,5
M12 / M16	SH 20x85	00	4,0	ე ა,ს	ე,5

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Kalksandvollstein KS-NF Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast	Anla


age C 12

Steintyp: Kalksandlochstein KS L-3DF

Tabelle C19: Beschreibung

Steintyp	Kalksandlochstein KS L-3DF
Rohdichte [kg/dm³]	1,4
Druckfestigkeit [N/mm²]	8, 12 oder 14
Norm	EN 771-2
Hersteller (Länderkennung)	z.B. Wemding (DE)
Steinabmessungen [mm]	240 x 175 x 113
Bohrmethode	Drehbohren

Tabelle C20: Montageparameter (Rand- und Achsabstände)

Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand		Maximales Installationsdrehmoment
		h _{ef}	C _{min} = C _{Cr}	S _{cr} = S _{min II}	S _{min} ⊥	T _{inst,max}
			[n	nm]		[Nm]
M8	SH 12x80	80				
	SH 16x85	85	100			
M8 / M10	SH 16x130	130	100			
	SH 16x130/330	130		240	113	8
	SH 20x85	85				
M12 / M16	SH 20x130	130	120			
	SH 20x200	200				

Tabelle C21: Verschiebungen

h _{ef}	N	δηο	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,36	0,73	V_{n}	0,82	1,23
85	1 V Rk	1,62	3,24	- Rk	1,83	2,75
130 ; 200	$1,4 \bullet \gamma_M$	1,70	3,40	$1,4 \bullet \gamma_M$	1,98	2,98

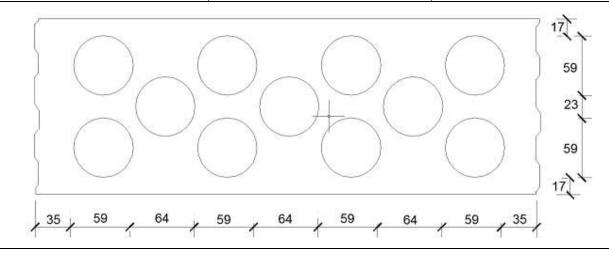
CELO Injektionssystem für Mauerwerk	
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Kalksandlochstein KS L-3DF	Anlage C 13
Steinbeschreibungen	
Montageparameter, Verschiebungen	

Steintyp: Kalksandlochstein KS L-3DF

Tabelle C22: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		Φ	Cł	narakteristische W	erte
Ankergröße	Siebhülse	Effektive Verankerungstiefe		ie	
Ank	Sie	Ver	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche
		h _{ef}	$N_{Rk}^{-1)}$	N _{Rk} 1)	$V_{Rk,b}^{2)}$
		[mm]		[kN]	
		Druckfestigkei	t f _b ≥ 8 N/mm²		
	SH 12x80	80	1,5	0,9	2,0
	SH 16x85	85	1,5	0,9	2,5
M8	SH 16x130	130	2,5	1,5	3,0
	SH 16x130/330	130	2,5	1,5	3,0
	SH 16x85	85	1,5	0,9	2,5
M10	SH 16x130	130	2,5	1,5	3,0
	SH 16x130/330	130	2,5	1,5	3,0
	SH 20x85	85	1,5	0,9	3,0
M12	SH 20x130 / SH 20x200	130 / 200	2,5	1,5	3,0
	SH 20x85	85	1,5	0,9	3,0
M16	SH 20x130 / SH 20x200	130 / 200	2,5	1,5	4,0
			: f _b ≥ 12 N/mm²	1,0	1,0
	SH 12x80	80	2,0	1,2	2,5
M 8	SH 16x85	85	2,0	1,2	3,5
	SH 16x130	130	3,5	2,0	4,5
	SH 16x130/330	130	3,5	2,0	4,5
	SH 16x85	85	2,0	1,2	3,5
M10	SH 16x130	130	3,5	2,0	4,5
IVI I U	SH 16x130/330	130	3,5	2,0	4,5
	SH 20x85	85	2,0	1,2	3,5
M12	SH 20x130 / SH 20x200	130 / 200	3,5		
			·	2,0	4,5
M16	SH 20x85	85	2,0	1,2	3,5
	SH 20x130 / SH 20x200	130 / 200	3,5	2,0	5,0
	0114000		: f _b ≥ 14 N/mm ²	4.5	2.0
	SH 12x80	80	2,5	1,5	3,0
M8	SH 16x85	85	2,5	1,5	4,0
	SH 16x130	130	4,0	3,0	5,0
	SH 16x130/330	130	4,0	3,0	5,0
	SH 16x85	85	2,5	1,5	4,0
M10	SH 16x130	130	4,0	3,0	5,0
	SH 16x130/330	130	4,0	3,0	5,0
M12	SH 20x85	85	2,5	1,5	4,5
-	SH 20x130 / SH 20x200	130 / 200	4,0	3,0	5,0
M16	SH 20x85	85	2,5	1,5	4,5
WITO	SH 20x130 / SH 20x200	130 / 200	4,0	3,0	6,0

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und V_{Rks} gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2


CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical Leistungen Kalksandlochstein KS L-3DF Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Steintyp: Kalksandlochstein KS L-12DF

Tabelle C23: Beschreibung

Steintyp	Kalksandlochstein KS L-12DF
Rohdichte [kg/dm³]	1,4
Druckfestigkeit [N/mm²]	10, 12 oder 16
Norm	EN 771-2
Hersteller (Länderkennung)	z.B. Wemding (DE)
Steinabmessungen [mm]	498 x 175 x 238
Bohrmethode	Drehbohren

Tabelle C24: Montageparameter (Rand- und Achsabstände)

Ankergröße	Siebhülse	Effetive Verankerungstiefe	Randabstand	Achsabstand		Maximales Installationsdrehmoment			
		h_{ef}	C _{min} = C _{cr}	S _{cr} = S _{min II}	S _{min} ⊥	T _{inst,max}			
			[m	m]		[Nm]			
M8	SH 12x80	80							2
	SH 16x85	85	100						
M8 / M10	SH 16x130	130							
	SH 16x130/330	130		498 238 4	496 236	4			
M12 / M16	SH 20x85	85	120						
M12 / M16	SH 20x130	130	120						

Tabelle C25: Verschiebungen

h _{ef}	N	δ_{N0}	$\delta_{\text{N}^{\infty}}$	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,21	0,42	V_{n}	1,77	2,66
85	1 V Rk	0,13	0,26	- ' Rk	3,89	5,83
130	$1,4 \bullet \gamma_M$	0,22	0,44	$1,4 \bullet \gamma_M$	4,35	6,52

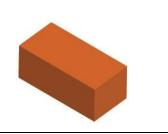
CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Kalksandlochstein KS L-12DF	Anlage C 15
Steinbeschreibungen	,
Montageparameter, Verschiebungen	

Steintyp: Kalksandlochstein KS L-12DF

Tabelle C26: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

.								
		ø)	С	harakteristische Wer	te			
Ankergröße Siebhülse		Effektive Verankerungstiefe		Nutzungskategorie d/d w/d w/w				
Ank	Sie	Vera	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche			
		h _{ef}	N _{Rk} 1)	N _{Rk} ¹⁾	V _{Rk,b} ²⁾			
		[mm]		[kN]	,			
		Druckfest	igkeit f _b ≥ 10 N/mm²					
	SH 12x80	80	0,4	0,3	3,0			
	SH 16x85	85	1,2	0,9	6,0			
M8	SH 16x130		3,5	2,5	7,0			
	SH 16x130/330	130	3,5	2,5	7,0			
	SH 16x85	85	1,2	0,9	6,0			
M10	SH 16x130	130	3,5	2,5	7,0			
	SH 16x130/330		3,5	2,5	7,0			
N440 / N440	SH 20x85	85	1,2	0,9	6,0			
M12 / M16	SH 20x130 / SH 20x200		3,5	2,5	7,0			
		Druckfest	Druckfestigkeit f _b ≥ 12 N/mm²					
	SH 12x80	80	0,4	0,3	3,5			
	SH 16x85	85	1,5	0,9	7,0			
М8	SH 16x130	130	4,5	3,0	8,0			
	SH 16x130/330	130	4,5	3,0	8,0			
	SH 16x85	85	1,5	0,9	7,0			
M10	SH 16x130	130	4,5	3,0	8,0			
	SH 16x130/330	130	4,5	3,0	8,0			
M12 / M16	SH 20x85	85	1,5	0,9	7,0			
IVITZ / IVITO	SH 20x130 / SH 20x200	130 / 200	4,5	3,0	8,0			
		Druckfest	igkeit f _b ≥ 16 N/mm²					
	SH 12x80	80	0,5	0,4	4,0			
M8	SH 16x85	85	2,0	1,2	9,0			
IVIO	SH 16x130	130	5,5	3,5	10,0			
	SH 16x130/330	130	5,5	3,5	10,0			
	SH 16x85	85	2,0	1,2	9,0			
M10	SH 16x130	130	5,5	3,5	10,0			
	SH 16x130/330	130	5,5	3,5	10,0			
M12 / M16	SH 20x85	85	2,0	1,2	8,5			
14112/14110	SH 20x130 / SH 20x200	130 / 200	5,5	3,5	10,0			

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054


CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical

Leistungen Kalksandlochstein KS L-12DF
Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

 $^{^{2)}}$ $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2

Steintyp: Vollziegel Mz-DF Tabelle C27: Beschreibung

Steintyp	Vollziegel Mz-DF
Rohdichte [kg/dm³]	1,64
Druckfestigkeit [N/mm²]	10, 20 oder 28
Norm	EN 771-1
Hersteller (Länderkennung)	z.B. Unipor (DE)
Steinabmessungen [mm]	240 x 115 x 55
Bohrmethode	Hammerbohren

Tabelle C28: Montageparameter (Rand- und Achsabstände)

Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand	Maximales Installationsdrehmoment
		h _{ef}	$c_{min} = c_{cr}$	S _{cr} = S _{min II} = S _{min} ⊥	T _{inst,max}
			[mm]	[Nm]	
	-	80	120	240	
M8	SH 12x80	80	120	240	6
	SH 16x85	85	127	255	
M10	-	90	135	270	10
M12 / M16	-	100	150	300	10
	SH 16x85	85	127	255	
M10	SH 16x130	130	195	390	
	SH 16x130/330	130	195	390	8
	SH 20x85	85	127	255	0
M12 / M16	SH 20x130	130	195	390	
	SH 20x200	200	300	600	

Tabelle C29: Verschiebungen

h _{ef}	N	δηο	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	$\frac{N_{Rk}}{1,4 \bullet \gamma_M}$	0,12	0,24		2,27	3,41
85		0,13	0,26	$\frac{V_{Rk}}{1,4\bullet\gamma_{M}}$	1,22	1,83
90		0,06	0,13		0,71	1,06
100		0,18	0,35		0,43	0,64
130 ; 200		0,42	0,85		1,22	1,83

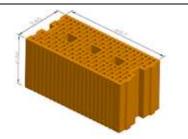
CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Vollziegel Mz-DF	Anlage C 17
Steinbeschreibungen	
Montageparameter, Verschiebungen	

Steintyp: Vollziegel Mz-DF

Tabelle C30: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		.1	CI	Charakteristische Werte			
Ankergröße Siebhülse		Effektive Verankerungs- tiefe	Nutzungskategorie d/d; w/d; w/w				
Anker	Sieb	Ver	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche		
		h _{ef}	N _{Rk} 1)	N _{Rk} 1)	$V_{Rk,b}^{2)}$		
		[mm]		[kN]			
	Druck	festigkeit f _b ≥ 1	I0 N/mm ²				
M8	-	80	1,5	1,2	3,0		
M10	-	90	1,5	1,2	3,5		
M12	-	100	1,5	0,9	5,0		
M16	_	100	2,5	1,5	5,0		
	SH 12x80	80	2,0	1,5	3,0		
М8	SH 16x85	85	2,0	1,5	3,0		
	SH 16x130 / SH 16x130/330	130	3,0	2,0	3,0		
	SH 16x85	85	2,0	1,5	3,5		
M10	SH 16x130 / SH 16x130/330	130	3,0	2,0	3,5		
	SH 20x85	85	2,0	1,5	3,5		
M12 / M16	SH 20x130 / SH 20x200	130 / 200	3,0	2,0	3,5		
'		festigkeit f _b ≥ 2		,	,		
М8	-	80	2,5	1,5	4,5		
M10	_	90	2,5	1,5	5,5		
M12	-	100	2,0	1,5	7,5		
M16	_	100	3,5	2,5	7,5		
IIIIO	SH 12x80	80	3,0	2,0	4,0		
M8	SH 16x85	85	3,0	2,0	4,5		
M8	SH 16x130 / SH 16x130/330	130	4,0	2,5	4,5		
	SH 16x85	85	3,0	2,0	5,0		
M10	SH 16x130 / SH 16x130/330	130	4,5	3,0	5,0		
	SH 20x85	85	3,0	2,0	5,0		
M12 / M16	SH 20x130 / SH 20x200	130 / 200	4,5	3,0	5,0		
1		festigkeit f _b ≥ 2					
M8	-	80	3,0	2,0	5,5		
M10	_	90	3,0	2,0	6,5		
M12	<u> </u>	100	2,5	1,5	9.0		
M16		100	4,5	,	9,0		
IVI I O	= SU 12v00		·	3,0	-		
M8	SH 12x80 SH 16x85	80 85	3,5 3,5	2,5 2,5	5,0 5,0		
IVIO	SH 16x130 / SH 16x130/330	130	5,0	3,5	5,0		
	SH 16x1307 SH 16x130/330	85	3,5	2,5	6,0		
M10	SH 16x130 / SH 16x130/330	130	5,0	3,5	6,0		
	SH 20x85	85	3,5	2,5	6,0		
M12 / M16	OI 1 20X0J	00	ا 5,5	∠,5	0,0		

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2


ı		
	CELO Injektionssystem für Mauerwerk	
	ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Ì		Anl
	Leistungen Vollziegel Mz-DF	AIII
	Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast	

lage C 18

Steintyp: Hochlochziegel HLz-16DF

Tabelle C31: Beschreibung

Steintyp	Hochlochziegel HLz-16DF
Rohdichte [kg/dm³]	0,83
Druckfestigkeit [N/mm²]	6, 9, 12 oder 14
Norm	EN 771-1
Hersteller (Länderkennung)	z.B. Unipor (DE)
Steinabmessungen [mm]	497 x 238 x 240
Bohrmethode	Drehbohren

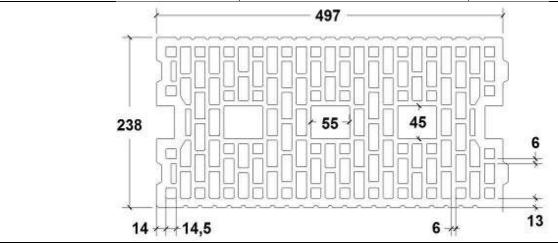


Tabelle C32: Montageparameter (Rand- und Achsabstände)

			1				
Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand		Maximales Installationsdrehmoment	
		h _{ef}	C _{min} = C _{cr}	s _{cr} = s _{min II}	S _{min} ⊥	T _{inst,max}	
				[mm]		[Nm]	
M8	SH 12x80	80					
	SH 16x85	85	100				
M8 / M10	SH 16x130	130		100			
	SH 16x130/330	130		497	238	6	
	SH 20x85	85					
M12 / M16	SH 20x130	130	120				
	SH 20x200	200					

Tabelle C33: Verschiebungen

h _{ef}	N	δηο	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,27	0,55	$V_{\rm ry}$	1,02	1,53
85	$\frac{IV_{Rk}}{1}$	0,55	1,10	$\frac{r_{Rk}}{1.4}$	2,14	3,22
130 ; 200	$1,4 \bullet \gamma_M$	0,19	0,38	$1,4 \bullet \gamma_M$	2,26	3,39

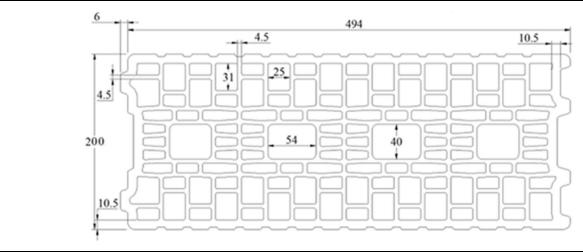
CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Hochlochziegel HLz-16DF	Anlage C 19
Steinbeschreibungen	3
Montageparameter, Verschiebungen	

Steintyp: Hochlochziegel HLz-16DF

Tabelle C34: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			CI	narakteristische We	erte
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe	Nutzungskategorie d/d; w/d; w/w		
Anker			40°C / 24°C N _{Rk} ¹⁾	80°C / 50°C N _{Rk} ¹⁾	Für alle Temperaturbereiche
			Druckfestigk	eit f _b ≥ 6 N/mm²	
	SH 12x80	80	1,2	0,75	2,5
MO	SH 16x85	85	1,5	1,2	4,0
М8	SH 16x130	130	2,5	1,5	4,0
	SH 16x130/330	130	2,5	1,5	4,0
	SH 16x85	85	1,5	1,2	4,0
M10	SH 16x130	130	2,5	1,5	6,0
	SH 16x130/330	130	2,5	1,5	6,0
M40 / M4C	SH 20x85	85	2,0	1,5	4,0
M12 / M16	SH 20x130 / SH 20x200	130/ 200	2,5	1,5	6,0
		Druckfestigk	eit f _b ≥ 9 N/mm²		
	SH 12x80	80	1,2	0,9	3,0
	SH 16x85	85	2,0	1,5	4,5
М8	SH 16x130	130	3,0	2,0	5,0
	SH 16x130/330	130	3,0	2,0	5,0
	SH 16x85	85	2,0	1,5	5,0
M10	SH 16x130	130	3,0	2,0	7,0
	SH 16x130/330	130	3,0	2,0	7,0
	SH 20x85	85	2,5	2,0	5,0
M12 / M16	SH 20x130 / SH 20x200	130/ 200	3,0	2,0	7,0
			eit f _b ≥ 12 N/mm²		•
	SH 12x80	80	1,5	1,2	3,5
	SH 16x85	85	2,5	1,5	5,5
М8	SH 16x130	130	3,5	2,5	6,0
	SH 16x130/330	130	3,5	2,5	6,0
	SH 16x85	85	2,5	1,5	6,0
M10	SH 16x130	130	3,5	2,5	8,0
	SH 16x130/330	130	3,5	2,5	8,0
	SH 20x85	85	3,5	2,0	6,0
M12 / M16	SH 20x130 / SH 20x200	130/ 200	3,5	2,5	8,0
			eit f _b ≥ 14 N/mm²	_,-,-	
	SH 12x80	80	1,5	1,2	4.0
	SH 16x85	85	2,5	2,0	6,0
М8	SH 16x130	130	3,5	2,5	6,5
	SH 16x130/330	130	3,5	2,5	6,5
	SH 16x85	85	2,5	2,0	6,0
M10	SH 16x130	130	3,5	2,5	9,0
14110	SH 16x130/330	130	3,5	2,5	9,0
	SH 20x85	85	3,5	2,0	6,0
M12 / M16	SH 20x130 / SH 20x200	130/ 200	3,5	2,5	9,0

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2


CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Hochlochziegel HLz-16DF Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast	Anlage C 20

Steintyp: Lochziegel Porotherm Homebric

Tabelle C35: Beschreibung

Steintyp	Lochziegel Porotherm Homebric
Rohdichte [kg/dm³]	0,68
Druckfestigkeit [N/mm²]	6, 8 oder 10
Norm	EN 771-1
Hersteller (Länderkennung)	z.B. Wienerberger (FR)
Steinabmessungen [mm]	500 x 200 x 299
Bohrmethode	Drehbohren

Tabelle C36: Montageparameter (Rand- und Achsabstände)

rabono ever montagoparameter (rama ana ronoabetanae)								
Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand		Maximales Installationsdrehmoment		
		h_{ef}	C _{min} = C _{cr}	S _{Cr} = S _{min II}	S _{min} ⊥	T _{inst,max}		
				[mm]		[Nm]		
M8	SH 12x80	80				2		
	SH 16x85	85	400					
M8 / M10	SH 16x130	130	100	500	200			
	SH 16x130/330	130			299	6		
M42 / M46	SH 20x85	85	120					
M12 / M16	SH 20x130	130	120	120	120			

Tabelle C37: Verschiebungen

h _{ef}	N	$\delta_{ extsf{N0}}$	$\delta_{N^{\infty}}$	V	δ_{V0}	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,65	1,29	V_{n}	1,26	1,89
85	1 V Rk	0,52	1,04	7 Rk	1,89	2,84
130	$1,4 \bullet \gamma_M$	0,45	0,90	$1,4 \bullet \gamma_M$	1,48	2,23

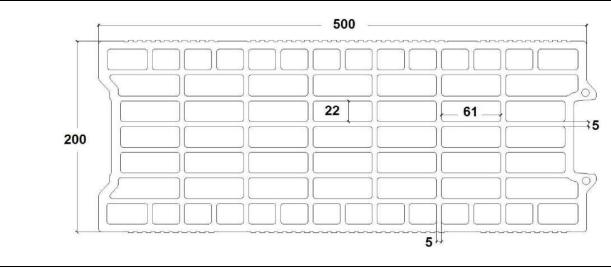
CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Lochziegel Porotherm Homebric	Anlage C 21
Steinbeschreibungen	3
Montageparameter, Verschiebungen	

Steintyp Lochziegel Porotherm Homebric

Tabelle C38: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		(1)		Charakteristische \	Verte	
Ankergröße	Siebhülse	Siebhülse Effektive Verankerungstiefe	Nutzungskategorie d/d w/d w/w			
Anker	Siebł	Veran	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche	
		h _{ef}	N _{Rk} 1)	N _{Rk} ¹⁾	$V_{Rk,b}^{2)}$	
		[mm]		[kN]		
		Druc	kfestigkeit f _b ≥ 6 N/m	nm²		
	SH 12x80	80	0,9	0,75	2,0	
	SH 16x85	85	1,2	0,75	2,0	
М8	SH 16x130	130	1,5	0,9	2,5	
	SH 16x130/330	130	1,5	0,9	2,5	
	SH 16x85	85	1,2	0,75	2,0	
M10	SH 16x130	130	1,5	0,9	2,5	
	SH 16x130/330	130	1,5	0,9	2,5	
	SH 20x85	85	1,2	0,75	3,0	
M12	SH 20x130	130	1,5	0,9	3,0	
	SH 20x85	85	1,2	0,75	3,0	
M16	SH 20x130	130	1,5	0,9	3,0	
			kfestigkeit f _b ≥ 8 N/m			
	SH 12x80	80	1,2	0,9	2,5	
	SH 16x85	85	1,2	0,9	2,5	
M8	SH 16x130	130	1,5	1,2	3,0	
	SH 16x130/330	130	1,5	1,2	3,0	
	SH 16x85	85	1,2	0,9	2,5	
M10	SH 16x130	130	1,5	1,2	3,0	
11110	SH 16x130/330	130	1,5	1,2	3,0	
	SH 20x85	85	1,2	0,9	3,5	
M12	SH 20x130	130	1,5	1,2	3,5	
	SH 20x85	85	1,3	0,9	3,5	
M16	SH 20x130	130	1,5	1,2	3,5	
	J11 20X 130		rfestigkeit f _b ≥ 10 N/r		ر,ی	
	SH 12x80	80 80	1,2	0,9	2.0	
	SH 12x80 SH 16x85	85 85	1,5	0,9	3,0	
M8						
	SH 16x130	130	2,0	1,2 1,2	3,5	
	SH 16x130/330	130	2,0	· · · · · · · · · · · · · · · · · · ·	3,5	
MAG	SH 16x85	85	1,5	0,9	3,0	
M10	SH 16x130	130	2,0	1,2	3,5	
	SH 16x130/330	130	2,0	1,2	3,5	
M12	SH 20x85	85	1,5	0,9	4,0	
	SH 20x130	130	2,0	1,2	4,0	
M16	SH 20x85	85	1,5	0,9	4,0	
-	SH 20x130	130	2,0	1,2	4,0	

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2


CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropi	cal
Leistungen Lochziegel Porotherm Homebric Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast	

Steintyp: Lochziegel BGV Thermo

Tabelle C39: Beschreibung

Steintyp	Lochziegel BGV Thermo
Rohdichte [kg/dm³]	0,62
Druckfestigkeit [N/mm²]	4, 6 oder 10
Norm	EN 771-1
Hersteller (Länderkennung)	z.B. Leroux (FR)
Steinabmessungen [mm]	500 x 200 x 314
Bohrmethode	Drehbohren

Tabelle C40: Montageparameter (Rand- und Achsabstände)

Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand		Maximales Installationsdrehmoment
		h _{ef}	C _{min} = C _{cr}	S _{cr} = S _{min II}	S _{min} ⊥	T _{inst,max}
				[mm]		[Nm]
M8	SH 12x80	80				2
	SH 16x85	85	100			
M8 / M10	SH 16x130	130	100	500	214	
	SH 16x130/330	130			314	4
M42 / M46	SH 20x85	85	120			
M12 / M16	SH 20x130	0x130 130 120				

Tabelle C41: Verschiebungen

h _{ef}	N	δηο	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,27	0,54	V ₋ .	1,21	1,81
85	1	0,39	0,77		2,00	3,01
130	$1,4 \bullet \gamma_M$	0,16	0.32	$1,4 \bullet \gamma_M$	1,60	2,39

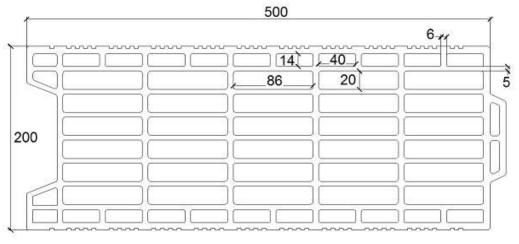
CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Lochziegel BGV Thermo	Anlage C 23
Steinbeschreibungen	3
Montageparameter, Verschiebungen	

Steintyp: Lochziegel BGV Thermo

Tabelle C42: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

				Charakteristische V	Verte
größe	nülse	Effektive Verankerungstiefe		Nutzungskatego d/d w/d w/w	
Ankergröße	Siebhülse	E	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche
		h _{ef}	N _{Rk} 1)	N _{Rk} 1)	$V_{Rk,b}^{2)}$
		[mm]		[kN]	
		Druc	kfestigkeit f _b ≥ 4 N/m	ım²	
	SH 12x80	80	0,5	0,4	2,0
	SH 16x85	85	0,75	0,5	2,0
М8	SH 16x130	130	0,9	0,75	2,5
	SH 16x130/330	130	0,9	0,75	2,5
	SH 16x85	85	0,75	0,5	2,0
M10	SH 16x130	130	1,2	0,75	2,5
	SH 16x130/330	130	1,2	0,75	2,5
	SH 20x85	85	0,75	0,5	2,0
M12	SH 20x130	130	1,2	0,75	2,5
	SH 20x85	85	0,9	0,6	2,0
M16	SH 20x130	130	1,2	0,75	2,5
	GITZOXTOO		kfestigkeit f _b ≥ 6 N/m		2,0
	SH 12x80	80	0,6	0,5	2,0
	SH 16x85	85	0,9	0,6	2,5
M8	SH 16x130	130	1,2	0,0	3,0
	SH 16x130/330	130	1,2	0,9	3,0
	SH 16x85	85	0,9	0,6	2,5
M10	SH 16x130	130	1,5	0,0	3,0
IVI IU	SH 16x130/330	130	1,5	0,9	3,0
		85	0,9	0,9	
M12	SH 20x85		1,5	0,8	3,0
	SH 20x130	130			3,0
M16	SH 20x85	85	1,2 1,5	0,75	3,0
	SH 20x130	130		0,9	3,0
	011.40.00		festigkeit f _b ≥ 10 N/n		1
	SH 12x80	80	0,9	0,6	3,0
M8	SH 16x85	85	1,2	0,9	3,5
	SH 16x130	130	1,5	1,2	4,0
	SH 16x130/330	130	1,5	1,2	4,0
	SH 16x85	85	1,2	0,9	3,5
M10	SH 16x130	130	1,5	1,2	4,0
	SH 16x130/330	130	1,5	1,2	4,0
M12	SH 20x85	85	1,2	0,75	3,5
····•	SH 20x130	130	1,5	1,2	4,0
M16	SH 20x85	85	1,5	0,9	3,5
	SH 20x130	130	1,5	1,2	4,0

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$, N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2


CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Lochziegel BGV Thermo Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast	Anlage C 24

Steintyp: Lochziegel Calibric Th

Tabelle C43: Beschreibung

Steintyp	Lochziegel Calibric Th
Rohdichte [kg/dm³]	0,62
Druckfestigkeit [N/mm²]	6, 9 oder 12
Norm	EN 771-1
Hersteller (Länderkennung)	z.B. Terreal (FR)
Steinabmessungen [mm]	500 x 200 x 314
Bohrmethode	Drehbohren

Tabelle C44: Montageparameter (Rand- und Achsabstände)

	<u> </u>						
Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand		Maximales Installationsdrehmoment	
		h _{ef}	C _{min} = C _{cr}	S _{cr} = S _{min II}	S _{min} ⊥	T _{inst,max}	
		j.	[r	[mm]		[Nm]	
M8	SH 12x80	80					
	SH 16x85	85	100				
M8 / M10	SH 16x130	130		F00	314		
	SH 16x130/330	130		500	500	500	314
M12 / M16	SH 20x85	85	120				
IVITZ / IVITO	SH 20x130	130	120	120			

Tabelle C45: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,48	0,96	$V_{n_{\ell}}$	1,18	1,78
85	1 V Rk	0,49	0,98	- Rk	2,20	3,30
130	$1,4 \bullet \gamma_M$	0,37	0,74	$1,4 \bullet \gamma_M$	2,31	3,46

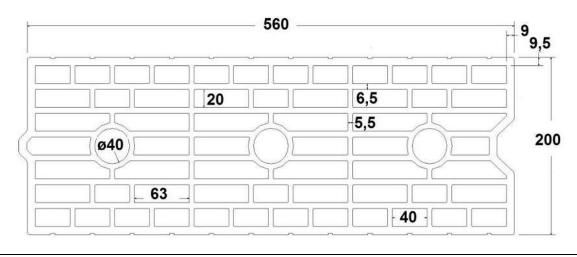
CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Lochziegel Calibric Th	Anlage C 25
Steinbeschreibungen	3
Montageparameter, Verschiebungen	

Steintyp: Lochziegel Calibric Th

Tabelle C46: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

				Charakteristische V	Verte		
größe nülse	ıülse	Siebhülse Effektive Verankerungstiefe		Nutzungskategorie d/d w/d w/w			
Ankergröße	Siebhülse	Veran	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche		
		h _{ef}	N _{Rk} 1)	N _{Rk} 1)	$V_{Rk,b}^{2)}$		
		[mm]		[kN]			
		Druc	kfestigkeit f _b ≥ 6 N/m	m²			
	SH 12x80	80	0,75	0,5	2,5		
	SH 16x85	85	0,75	0,5	3,5		
М8	SH 16x130	130	0,9	0,6	3,5		
	SH 16x130/330	130	0,9	0,6	3,5		
	SH 16x85	85	0,75	0,5	3,5		
M10	SH 16x130	130	0,9	0,6	3,5		
	SH 16x130/330	130	0,9	0,6	3,5		
	SH 20x85	85	0,75	0,5	6,0		
M12	SH 20x130	130	0,9	0,6	6,0		
	SH 20x85	85	1,2	0,75	6,0		
M16	SH 20x130	130	1,2	0,75	6,0		
			kfestigkeit f _b ≥ 9 N/m		,		
	SH 12x80	80	0,9	0,6	3,5		
	SH 16x85	85	0,9	0,6	4,5		
М8	SH 16x130	130	1,2	0,75	4,5		
	SH 16x130/330	130	1,2	0,75	4,5		
	SH 16x85	85	0,9	0,6	4,5		
M10	SH 16x130	130	1,2	0,9	4,5		
	SH 16x130/330	130	1,2	0,9	4,5		
	SH 20x85	85	0,9	0,6	7,5		
M12	SH 20x130	130	1,2	0,9	7,5		
	SH 20x85	85	1,5	0,9	7,5		
M16	SH 20x130	130	1,5	0,9	7,5		
			rfestigkeit f _b ≥ 12 N/n		.,0		
	SH 12x80	80	0,9	0,75	4,0		
	SH 16x85	85	0,9	0,75	5,5		
М8	SH 16x130	130	1,2	0,9	5,5		
	SH 16x130/330	130	1,2	0,9	5,5		
	SH 16x85	85	0,9	0,75	5,5		
M10	SH 16x130	130	1,5	0,9	5,5		
	SH 16x130/330	130	1,5	0,9	5,5		
	SH 20x85	85	0,9	0,75	8,5		
M12	SH 20x130	130	1,5	0,9	8,5		
	SH 20x85	85	1,5	1,2	8,5		
M16	SH 20x130	130	1,5	1,2	8,5		

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2


CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX F	PYSF Tropical
Leistungen Lochziegel Calibric Th Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast	

Steintyp: Lochziegel Urbanbric

Tabelle C47: Beschreibung

Steintyp	Lochziegel Urbanbric
Rohdichte [kg/dm³]	0,74
Druckfestigkeit [N/mm²]	6 oder 9
Norm	EN 771-1
Hersteller (Länderkennung)	z.B. Imerys (FR)
Steinabmessungen [mm]	560 x 200 x 274
Bohrmethode	Drehbohren

Tabelle C48: Montageparameter (Rand- und Achsabstände)

Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand		Maximales Installationsdrehmoment	
		h _{ef}	C _{min} = C _{cr}	S _{cr} = S _{min II}	S _{min} ⊥	T _{inst,max}	
			[mm]			[Nm]	
M8	SH 12x80	80					
	SH 16x85	85	100				
M8 / M10	SH 16x130	130	100	560	274	2	
	SH 16x130/330	130			500	2/4	2
M12 / M16	SH 20x85	85	120				
IVI I Z / IVI I O	SH 20x130	130					

Tabelle C49: Verschiebungen

h _{ef}	N	δηο	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,34	0,67	V _n ,	0,71	1,06
85		0,52	1,04	$\frac{r_{Rk}}{1.4}$	1,37	2,06
130	$1,4 \bullet \gamma_M$	0,62	1,24	$1,4 \bullet \gamma_M$	1,62	2,44

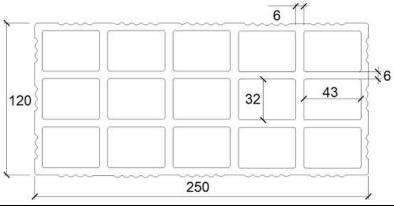
CELO Injektionssystem für Mauerwerk	
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Lochziegel Urbanbric	Anlage C 27
Steinbeschreibungen	J
Montageparameter. Verschiebungen	

Steintyp: Lochziegel Urbanbric

Tabelle C50: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

				Charakteristische W	/erte		
Ankergröße	Siebhülse	Effektive Verankerungstiefe	Nutzungskategorie d/d w/d w/w				
Ank	Sie	Sie	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche		
		h _{ef}	N _{Rk} 1)	N _{Rk} ¹⁾	V _{Rk,b} ²⁾		
		[mm]	[kN]		,		
		Druck	uckfestigkeit f _b ≥ 6 N/mm²				
M8	SH 12x80	80	0,9	0,75	3,0		
	SH 16x85	85	1,2	0,75	3,5		
M8 / M10	SH 16x130	130	1,5	1,2	3,5		
	SH 16x130/330	130	1,5	1,2	3,5		
M12 / M16	SH 20x85	85	1,2	0,75	4,0		
W112 / W116	SH 20x130	130	1,5	1,2	4,0		
		Druck	festigkeit f _b ≥ 9 N/m	m ²			
M8	SH 12x80	80	1,2	0,9	3,5		
	SH 16x85	85	1,5	0,9	4,0		
M8 / M10	SH 16x130	130	2,0	1,5	4,5		
	SH 16x130/330	130	2,0	1,5	4,5		
M42 / M46	SH 20x85	85	1,5	0,9	5,0		
M12 / M16	SH 20x130	130	2,0	1,5	5,0		

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2


CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical Leistungen Lochziegel Urbanbric Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Steintyp: Lochziegel Blocchi Leggeri

Tabelle C51: Beschreibung

Steintyp	Lochziegel Blocchi Leggeri
Rohdichte [kg/dm³]	0,55
Druckfestigkeit [N/mm²]	4, 6 oder 8
Norm	EN 771-1
Hersteller (Länderkennung)	z.B. Wienerberger (IT)
Steinabmessungen [mm]	250 x 120 x 250
Bohrmethode	Drehbohren

Tabelle C52: Montageparameter (Rand- und Achsabstände)

Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand		Maximales Installationsdrehmoment
		h _{ef}	$c_{min} = c_{cr}$	s _{cr} = s _{min II}	S _{min} ⊥	T _{inst,max}
				[mm]		[Nm]
M8	SH 12x80	80				
	SH 16x85	85	100			
M8 / M10	SH 16x130	130	100			
M12 / M16	SH 16x130/330	130		250	250	4
	SH 20x85	85				
	SH 20x130	130	120			
	SH 20x200	200				

Tabelle C53: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	δ_{v_0}	δv∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N_{N}	0,32	0,64	V_{n_i}	1,16	1,74
85	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,26	0,53	1 1 1	2,52	3,78
130 ; 200	$1,4 \bullet \gamma_M$	0,32	0,64	$1,4 \bullet \gamma_M$	2,52	3,78

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Lochziegel Blocchi Leggeri	Anlage C 29
Steinbeschreibungen	3
Montageparameter, Verschiebungen	

Steintyp: Lochziegel Blocchi Leggeri

Tabelle C54: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		0		Charakteristische W	/erte		
Ankergröße	ülse	Siebhülse Effektive Verankerungstiefe	Nutzungskategorie d/d w/d w/w				
Ankerç	Siebhülse	Veranl	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche		
		h _{ef}	N _{Rk} 1)	N _{Rk} ¹⁾	$V_{Rk,b}^{2)}$		
		[mm]		[kN]	,		
	1	Druck	rfestigkeit f _b ≥ 4 N/m	m²			
М8	SH 12x80	80	0,4	0,3	2,0		
	SH 16x85	85	0,4	0,3	2,0		
M8 / M10	SH 16x130	130	0,5	0,3	2,0		
	SH 16x130/330	130	0,5	0,3	2,0		
	SH 20x85	85	0,4	0,3	2,0		
M12 / M16	SH 20x130	130	0,5	0,3	2,0		
	SH 20x200	200	0,5	0,3	2,0		
		Druck	rfestigkeit f _b ≥ 6 N/m	m²			
M8	SH 12x80	80	0,5	0,3	2,0		
	SH 16x85	85	0,5	0,3	2,0		
M8 / M10	SH 16x130	130	0,6	0,4	2,0		
	SH 16x130/330	130	0,6	0,4	2,0		
	SH 20x85	85	0,5	0,3	2,5		
M12 / M16	SH 20x130	130	0,6	0,4	2,5		
	SH 20x200	200	0,6	0,4	2,5		
		Druck	festigkeit f _b ≥ 8 N/m	m²			
M8	SH 12x80	80	0,6	0,4	2,5		
	SH 16x85	85	0,6	0,4	2,5		
M8 / M10	SH 16x130	130	0,6	0,5	2,5		
	SH 16x130/330	130	0,6	0,5	2,5		
	SH 20x85	85	0,6	0,4	3,0		
M12 / M16	SH 20x130	130	0,6	0,5	3,0		
	SH 20x200	200	0,6	0,5	3,0		

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical Leistungen Lochziegel Blocchi Leggeri Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Steintyp: Lochziegel Doppio Uni

Tabelle C55: Beschreibung

Steintyp	Lochziegel Doppio Uni
Rohdichte [kg/dm³]	0,92
Druckfestigkeit [N/mm²]	10, 16, 20 oder 28
Norm	EN 771-1
Hersteller (Länderkennung)	z.B. Wienerberger (IT)
Steinabmessungen [mm]	250 x 120 x 120
Bohrmethode	Drehbohren

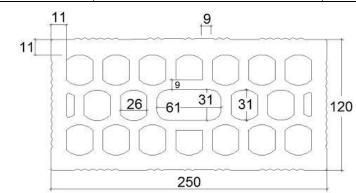


Tabelle C56: Montageparameter (Rand- und Achsabstände)

Tabelle 000: Montageparameter (Name-una Achsabstande)									
Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand		Maximales Installationsdrehmoment			
		h _{ef}	C _{min} = C _{cr}	S _{cr} = S _{min II}	S _{min} ⊥	T _{inst,max}			
				[Nm]					
M8	SH 12x80	80							
	SH 16x85	85	400						
M8 / M10	SH 16x130	130	100						
M12 / M16	SH 16x130/330	130		250	120	4			
	SH 20x85	85							
	SH 20x130	130	120						
	SH 20x200	200							

Tabelle C57: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,54	1,08	V_{n}	1,63	2,45
85	1 V Rk	0,17	0,34	- Rk	1,75	2,63
130 ; 200	$1,4 \bullet \gamma_M$	0,54	1,08	$1,4 \bullet \gamma_M$	1,75	2,63

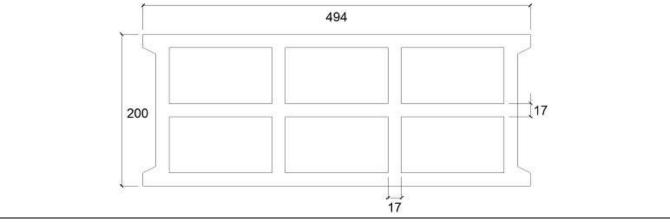
CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Lochziegel Doppio Uni	Anlage C 31
Steinbeschreibungen	3
Montageparameter, Verschiebungen	

Steintyp: Lochziegel Doppio Uni

Tabelle C58: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		0	(Charakteristische W	/erte		
größe	ülse	Effektive Verankerungstiefe	Nutzungskategorie d/d w/d w/w				
Ankergröße Siebhülse	Veran	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche			
		h _{ef}	N _{Rk} 1)	N _{Rk} 1)	$V_{Rk,b}^{2)}$		
		[mm]		[kN]	,		
			igkeit f _b ≥ 10 N/mm²				
M8	SH 12x80	80	0,9	0,6	2,0		
	SH 16x85	85	0,9	0,6	2,0		
M8 / M10	SH 16x130	130	0,9	0,6	2,0		
	SH 16x130/330	130	0,9	0,6	2,0		
	SH 20x85	85	1,2	0,75	2,0		
M12 / M16	SH 20x130	130	1,2	0,75	2,0		
	SH 20x200	200	1,2	0,75	2,0		
,		Druckfesti	igkeit f _b ≥ 16 N/mm²	2	· ·		
M8	SH 12x80	80	0,9	0,75	2,5		
M8 / M10	SH 16x85	85	1,2	0,9	2,5		
	SH 16x130	130	1,2	0,9	2,5		
	SH 16x130/330	130	1,2	0,9	2,5		
	SH 20x85	85	1,5	0,9	2,5		
M12 / M16	SH 20x130	130	1,5	0,9	2,5		
	SH 20x200	200	1,5	0,9	2,5		
,		Druckfesti	igkeit f _b ≥ 20 N/mm²				
М8	SH 12x80	80	1,2	0,75	3,0		
	SH 16x85	85	1,2	0,9	3,0		
M8 / M10	SH 16x130	130	1,5	0,9	3,0		
	SH 16x130/330	130	1,5	0,9	3,0		
	SH 20x85	85	1,5	0,9	3,0		
M12 / M16	SH 20x130	130	1,5	0,9	3,0		
	SH 20x200	200	1,5	0,9	3,0		
,		Druckfesti	igkeit f _b ≥ 28 N/mm²		,		
M8	SH 12x80	80	1,5	0,9	3,5		
	SH 16x85	85	1,5	1,2	3,5		
M8 / M10	SH 16x130	130	1,5	1,2	3,5		
	SH 16x130/330	130	1,5	1,2	3,5		
	SH 20x85	85	2,0	1,2	3,5		
M12 / M16	SH 20x130	130	2,0	1,2	3,5		
	SH 20x200	200	2,0	1,2	3,5		

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2


CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical Leistungen Lochziegel Doppio Uni Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Steintyp: Leichtbetonlochstein Bloc creux B40

Tabelle C59: Beschreibung

Steintyp	Leichtbetonlochstein Bloc creux B40
Rohdichte [kg/dm³]	0,8
Druckfestigkeit [N/mm²]	4
Norm	EN 771-3
Hersteller (Länderkennung)	z.B. Sepa (FR)
Steinabmessungen [mm]	494 x 200 x 190
Bohrmethode	Drehbohren

Tabelle C60: Montageparameter (Rand- und Achsabstände)

Ankergröße	Siebhülse	Effektive Verankerungstiefe Wandapstand Achsabst		abstand	Maximales Installationsdrehmoment	
		h _{ef}	C _{min} = C _{cr}	S _{cr} = S _{min II}	S _{min} ⊥	T _{inst,max}
		[n		nm]		[Nm]
M8	SH 12x80	80				
	SH 16x85	85	100			
M8 / M10	SH 16x130	130	100	494	100	2
	SH 16x130/330	130		494	190	2
M42 / M46	SH 20x85	85	120			
M12 / M16	SH 20x130	130	120			

Tabelle C61: Verschiebungen

h _{ef}	N	δ_{N0}	$\delta_{\text{N}^{\infty}}$	V	δ_{V0}	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,14	0,29	V_{n}	0,25	0,37
85	1 V Rk	0,45	0,90	1 1 1	0,98	1,47
130	$1,4 \bullet \gamma_M$	0,61	1,22	$1,4 \bullet \gamma_M$	1,10	1,65

CELO Injektionssystem für Mauerwerk	
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen Leichtbetonlochstein Bloc creux B40	Anlage C 33
Steinbeschreibungen	
Montageparameter, Verschiebungen	

Steintyp: Leichtbetonlochstein Bloc creux B40

Tabelle C62: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		A. Control of the Con				
	d)		Charakteristische V	Verte		
ülse	ffektive kerungstief	Nutzungskategorie d/d w/d w/w				
Siebh	Veran	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche		
	h _{ef}	N _{Rk} 1)	N _{Rk} 1)	$V_{Rk,b}^{2)}$		
	[mm]	[kN]				
	Druck	rfestigkeit f _b ≥ 4 N/m	nm²			
SH 12x80	80	0,4	0,3	1,2		
SH 16x85	85	0,6	0,5	3,0		
SH 16x130	130	2,0	1,5	3,5		
SH 16x130/330	130	2,0	1,5	3,5		
SH 16x85	85	0,6	0,5	3,0		
SH 16x130	130	2,0	1,5	3,5		
SH 16x130/330	130	2,0	1,5	3,5		
SH 20x85	85	0,9	0,6	3,0		
SH 20x130	130	2,0	1,5	3,5		
SH 20x85	85	0,9	0,6	3,0		
SH 20x130	130	2,0	1,5	3,5		
	SH 16x85 SH 16x130 SH 16x130/330 SH 16x85 SH 16x130 SH 16x130/330 SH 20x85 SH 20x130 SH 20x85	hef [mm] Druck SH 12x80 80 SH 16x85 85 SH 16x130 130 SH 16x130/330 130 SH 16x130/330 130 SH 16x130/330 130 SH 16x130/330 130 SH 20x85 85 SH 20x85 85 SH 20x85 85 SH 20x85 85	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{100} = \frac{1}{100} = \frac{1}$		

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2

CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical Leistungen Leichtbetonlochstein Bloc creux B40 Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Steintyp: Leichtbetonvollstein

Tabelle C63: Beschreibung

Steintyp	Leichtbetonvollstein
Rohdichte [kg/dm³]	0,63
Druckfestigkeit [N/mm²]	2
Norm	EN 771-3
Hersteller (Länderkennung)	z.B. Bisotherm (DE)
Steinabmessungen [mm]	300 x 123 x 248
Bohrmethode	Drehbohren

Tabelle C64: Montageparameter (Rand- und Achsabstände)

Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand	Maximales Installationsdrehmoment	
		h _{ef}	C _{min} = C _{cr}	S _{Cr} = S _{min II} = S _{min} ⊥	T _{inst,max}	
		[mm]			[Nm]	
M8	-	80	120	240	6	
M10	-	90	135	270	6	
M12	-	100	150	300	10	
M16	-	100	150	300	14	

Tabelle C65: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N _N	0,64	1,28	V_{n_i}	0,50	0,75
90	1 V Rk	0,70	1,41	1 1 1	0,68	1,03
100	$1,4 \bullet \gamma_M$	0,21	0,42	$1,4 \bullet \gamma_M$	0,54	0,81

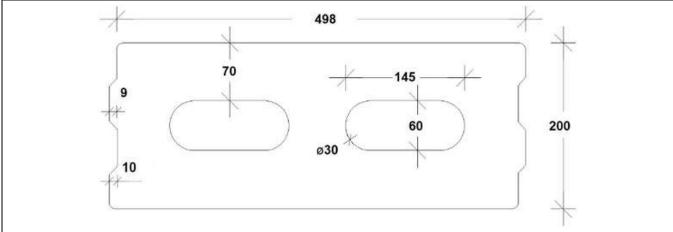
CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical
Leistungen Leichtbetonlochstein
Steinbeschreibungen
Montageparameter, Verschiebungen

Steintyp: Leichtbetonvollstein

Tabelle C66: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		ø.		Charakteristische V	Verte			
größe	Siebhülse Siebhülse Effektive Verankerungstiefe	Effektive nkerungstief		Nutzungskatego d/d w/d w/w	rie			
Ankergröße	Siebhülse	E	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche			
				h _{ef}	h _{ef}	N _{Rk} 1)	N _{Rk} 1)	$V_{Rk,b}^{2)}$
		[mm]		[kN]				
		Druck	rfestigkeit f _b ≥ 2 N/m	m²				
М8	-	80	2,0	1,5	3,0			
M10	-	90	2,0	1,5	3,5			
M12	-	100	2,0	1,5	4,0			
M16	-	100	2,0	1,5	4,0			

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054 $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2


CELO Injektionssystem für Mauerwerk ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical Leistungen Leichtbetonvollstein Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Steintyp: Leichtbetonlochstein – Leca Lex harkko RUH-200

Tabelle C67: Beschreibung

Steintyp	Leichtbetonlochstein Leca Lex harkko RUH-200
Rohdichte [kg/dm³]	0,7
Druckfestigkeit [N/mm²]	2,7
Norm	EN 771-3
Hersteller (Länderkennung)	z.B. Saint-Gobain Weber (Fin)
Steinabmessungen [mm]	498 x 200 x 195
Bohrmethode	Drehbohren

Tabelle C68: Montageparameter (Rand- und Achsabstände)

Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsa	bstand	Maximales Installationsdrehmoment			
		h _{ef}	C _{min} = C _{cr}	S _{cr} = S _{min II}	S _{min} ⊥	T _{inst,max}			
			[mm]			[Nm]			
M8	SH 12x80	80	120						
	SH 16x85	85	127						
M8 / M10	SH 16x130	130	195	498	195	0			
	SH 16x130/330	130	195		498	498	490	195	8
M12 / M16	SH 20x85	85	127						
IVI I Z / IVI I O	SH 20x130	130	195			'			

Tabelle C69: Verschiebungen

h _{ef}	N	δηο	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	N	0,11	0,22	V_{n}	0,47	0,70
85	1 V Rk	0,11	0,23	1 1 1	0,38	0,57
130	$1,4 \bullet \gamma_M$	0,10	0,20	$1,4 \bullet \gamma_M$	0,56	0,85

CELO Injektionssystem für Mauerwerk	
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical	
Leistungen LECA LEX harkko RUH-200 Leichtbetonlochstein	Anlage C 37
Steinbeschreibungen	3
Montageparameter, Verschiebungen	

Steintyp: Leichtbetonlochstein brick – Leca Lex harkko RUH-200 Tabelle C70: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		d)		Charakteristische V	Verte
ıröße ülse	Effektive Verankerungstiefe	Nutzungskategorie d/d w/d w/w			
Ankergröße	Siebhülse	Veran	40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche
		h _{ef}	N _{Rk} 1)	N _{Rk} 1)	$V_{Rk,b}^{2)}$
		[mm]		[kN]	
		Druck	festigkeit f _b ≥ 2,7 N/r	mm²	
	SH 12x80	80	2,0	1,2	2,5
M8	SH 16x85	85	2,0	1,2	3,5
IVIO	SH 16x130	130	2,5	1,5	3,5
	SH 16x130/330	130	2,5	1,5	3,5
	SH 16x85	85	2,0	1,5	3,5
M10	SH 16x130	130	2,5	1,5	3,5
	SH 16x130/330	130	2,5	1,5	3,5
M12	SH 20x85	85	2,5	1,5	3,5
IVITZ	SH 20x130	130	2,5	1,5	3,5
M16	SH 20x85	85	2,5	1,5	3,5
IVITO	SH 20x130	130	2,5	1,5	3,5

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054

CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical

Leistungen LECA LEX harkko RUH-200 Leichtbetonlochstein
Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

 $^{^{2)}}$ $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2

Steintyp: Leichtbetonvollstein – Leca Lex harkko RUH-200 kulma

Tabelle C71: Beschreibung

Steintyp	Leichtbetonvollstein Leca Lex harkko RUH-200 kulma
Rohdichte [kg/dm³]	0,78
Druckfestigkeit [N/mm²]	3
Norm	EN 771-3
Hersteller (Länderkennung)	z.B. Saint-Gobain Weber (Fin)
Steinabmessungen [mm]	498 x 200 x 195
Bohrmethode	Drehbohren

Tabelle C72: Montageparameter (Rand- und Achsabstände)

Ankergröße	Siebhülse	Effektive Verankerungstiefe	Randabstand	Achsabstand	Maximales Installationsdrehmoment	
		h _{ef}	$c_{min} = c_{cr}$	$s_{cr} = s_{min l} = s_{min} \perp$	T _{inst,max}	
		[mm]			[Nm]	
M8	-	80	120	240	6	
M10	-	90	135	270	12	
M12	-	100	150	300	14	
M16	-	100	150	300	16	
M8	SH 12x80	80	120	240	- 8	
	SH 16x85	85	127	255	0	
M8 / M10	SH 16x130	130	195	390	16	
	SH 16x130/330	130	195	390	16	
M12 / M16	SH 20x85	85	127	255	12	
IVI 12 / IVI 10	SH 20x130	130	195	390	16	

Tabelle C73: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	$\frac{N_{Rk}}{1,4 \bullet \gamma_M}$	0,09	0,18	$\frac{V_{Rk}}{1,4 \bullet \gamma_M}$	0,48	0,72
85		0,07	0,15		0,77	1,15
90		0,13	0,26		0,26	0,39
100		0,13	0,23		0,36	0,54
130		0,10	0,21		0,68	1,01

CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical
Leistungen LECA LEX harkko RUH-200 Kulma Leichtbetonvollstein
Steinbeschreibungen
Montageparameter, Verschiebungen

Steintyp: Leichtbetonvollstein – Leca Lex harkko RUH-200 kulma Tabelle C74: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

	Siebhülse	Effektive Verankerungstiefe	Charakteristische Werte Nutzungskategorie d/d w/d w/w			
Ankergröße						
			40°C / 24°C	80°C / 50°C	Für alle Temperaturbereiche	
		h _{ef}	N _{Rk} 1)	N _{Rk} ¹⁾	$V_{Rk,b}^{2)}$	
		[mm]	[kN]			
Druckfestigkeit f _b ≥ 3,0 N/mm ²						
М8	-	80	2,0	1,2	3,0	
M10	-	90	3,0	2,0	4,0	
M12	-	100	3,0	2,0	4,0	
M16	-	100	3,0	2,0	4,0	
	SH 12x80	80	2,0	1,2	3,0	
MO	SH 16x85	85	2,0	1,5	3,5	
М8	SH 16x130	130	3,0	2,0	4,0	
	SH 16x130/330	130	3,0	2,0	4,0	
M10	SH 16x85	85	2,0	1,5	3,5	
	SH 16x130	130	3,0	2,0	4,0	
	SH 16x130/330	130	3,0	2,0	4,0	
M12 / M16	SH 20x85	85	2,0	1,5	4,5	
	SH 20x130	130	3,0	2,0	4,5	

Bemessung gemäß TR 054: $N_{Rk} = N_{Rkp} = N_{Rkb}$; N_{Rks} gemäß Tabelle C2 Anhang C2; $N_{Rk,pb}$ gemäß TR 054

 $^{2)}$ $V_{Rk,pb}$ und $V_{Rk,c}$ gemäß TR 054; $V_{Rk,s}$ gemäß Tabelle C2 Anhang C2

CELO Injektionssystem für Mauerwerk
ResiFIX PYSF, ResiFIX PYSF Change, ResiFIX PYSF Express, ResiFIX PYSF Tropical

Leistungen LECA LEX harkko RUH-200 Kulma Leichtbetonvollstein
Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast